Oxford Battery Energy Storage Project

February 12th, 2025

About Boralex

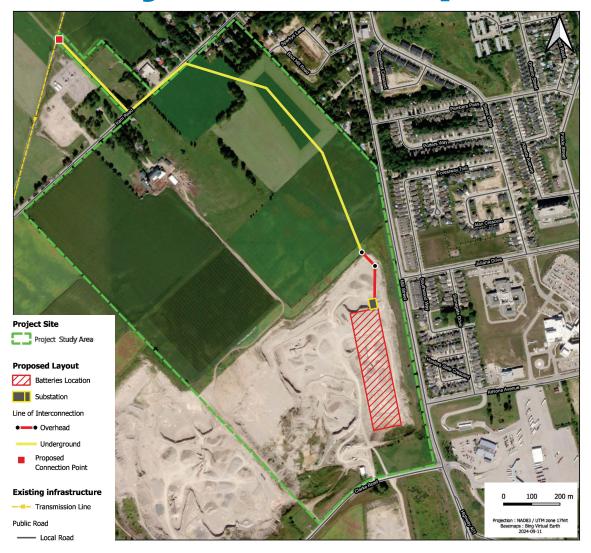
Canadian-based company.

Leader in renewable energy in North America and Europe.

More than **30 years** of experience, including over **10 years** in Ontario.

Over 3 GW of installed capacity.

We **develop**, **build**, **and operate** wind, solar, hydro electricity generation systems, and storage.



Why Is This Project Needed?

- Ontario requires new electricity resources, such as energy storage, to meet our energy needs for this decade.
- To address this need, the Independent Electricity System Operator
 (IESO) secured approximately 3,000 megawatts (MW) through competitive
 bids, including the Expedited Long-Term Request for Proposals (E-LT1 RFP)
 and Long-Term Request for Proposals (LT1 RFP) processes.
 - Boralex was the Leading Contract Awardee in E-LT1, with two Storage Projects totalling 380 MW / 1.5GWh.
 - On May 9, 2024, Boralex, in partnership with Six Nations of the Grand River Development Corp., won a contract for the Oxford Battery Energy Storage Project to provide 125 MW of storage capacity through the LT1 RFP process.

Project Description

- Located in the Township of South-West Oxford.
- 125 MW for 4 hours capacity.
- Connection to the existing 115 kilovolt (kV) transmission line.
- Majority of the 1.5 km interconnection line will be underground.
- The project will be located in an aggregate facility to minimize environmental impact and repurpose non-arable land.
- The inherent sound barriers formed by the surrounding aggregate pit walls make this site naturally conducive to sound reduction

Project Phase Overview

PERMITTING

- Class Environmental Assessment (EA) for Transmission Facilities to be obtained from the Ministry of the Environment, Conservation and Parks (MECP).
- Zoning Bylaw Amendment & Official Plan Amendment.
- Environmental Compliance
 Approval (ECA) for stormwater to be obtained from the MECP.
- Other as required.

CONSTRUCTION

Implement standard construction mitigation practices

Elements that will be carefully considered:

- Air Quality
- Sound
- Environment & Wildlife
- Local Traffic Safety
- Fire Management
- Erosion and Sediment Control

OPERATION

Comply with requirements

Procedures that will be carefully enforced:

- Emergency Response
- Fire Management
- Sound
- Environment
- Vegetation Management

Community Risk Assessment (CRA)

The purpose of the CRA is to review the potential impacts of BESS on the **health and safety** of the community's residents and to develop mitigation plans that help **avoid and minimize** the potential and severity of potential impacts.

The CRA is being finalized:

- In the highly unlikely event of a fire, chemical emissions to air will not impact the general public.
- Potential impacts to local groundwater are not expected. The facility will be constructed and operated according to the requirements set out by MECP through an ECA.
- Normal operations of the facility will adhere to stringent MECP sound standards.
- Construction activities will be similar, or less, than those occurring daily in the aggregate pit.
- Design and operations standards for BESS facilities have improved significantly in the past five years.
- Recommendation to complete an Emergency Response Plan (ERP).

The Oxford BESS will not pose an undue risk to the community.

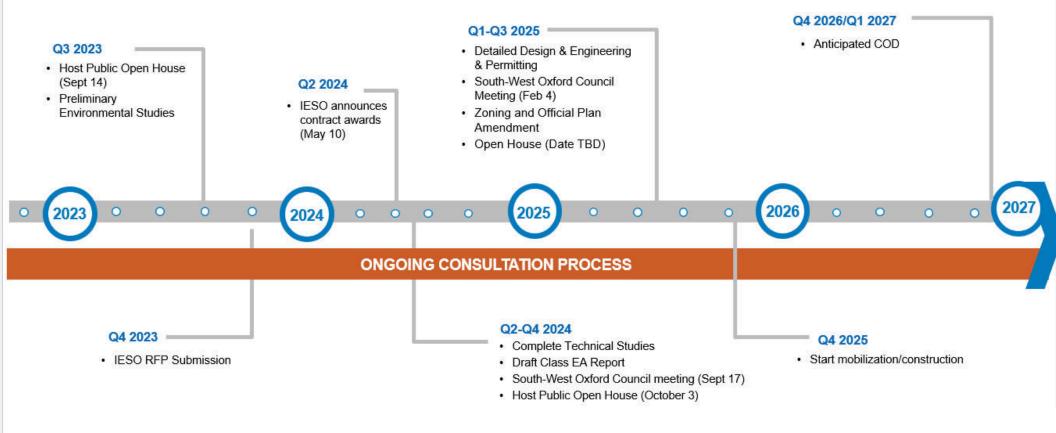
Commitment to Fire Safety

PREVENTION

- Retain a verified third-party Fire Safety Expert.
- Selecting BESS equipment designed to meet National Fire Code of Canada, NFPA 68 and/or 69 standards.
- Batteries are designed and manufactured to adhere to and pass evolving safety tests prior to operation including UL 9540 and UL 9540A.

MONITORING & DETECTION

- Thermal management systems (fans, ventilations, cooling) to maintain safe operating temperatures.
- In equipment safety controls (sensors) to detect potential abnormal battery behaviours.
- Control room monitors to detect potential variances in battery behaviors.



EMERGENCY RESPONSE

- Prepare comprehensive emergency response plan in collaboration with third-party Fire Safety Experts and local fire departments.
- Provide rigorous Safety
 Training for first responders
 onsite personnel.

Anticipated Timeline

Thank You!

Any Questions?

Appendix

Community Benefits

Employment

Creating jobs in host communities: ~ 100 Jobs created during construction. ~ 1-2 full time employees for operation.

Economy

Procuring local: Expect to procure **materials and services** from host communities (e.g., aggregates, civil works, machinery).

Consumers

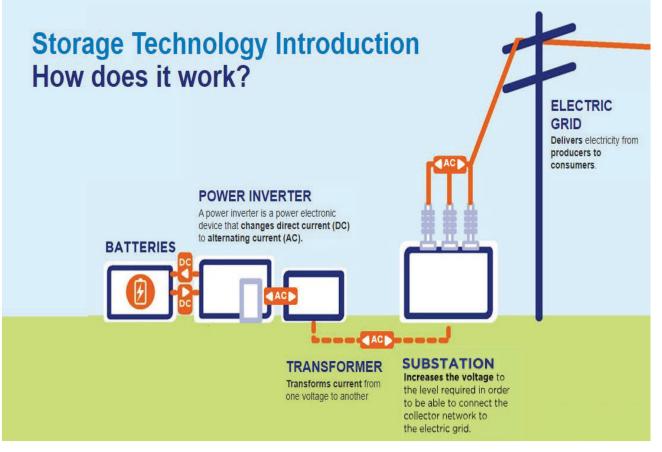
Reduce energy bills: Significant benefits to Ontario's ratepayers by reducing the need and cost associated with using gas-fired power plants during times of peak demand.

Sustainable Energy: Fosters penetration of renewable energies by reducing carbon emissions from traditional energy systems (e.g., fossil fuels).

Supporting the Local Community

Boralex is dedicated to being a good neighbour and an integrated part of the community.

Every year we support local nonprofit organizations, charities, and events that contribute to the vitality of the area.


We believe a successful project benefits the entire host community.

How Does Battery Storage Work?

ENERGY STORAGE IS THE PROCESS OF CAPTURING AND RETAINING ENERGY AT ONE POINT IN TIME, SO THAT IT CAN BE USED AT ANOTHER POINT IN TIME.

- Energy is generated from various sources.
- This energy enters the grid.
- The energy is constantly metered and monitored by a battery management system.
- If there is surplus energy, energy from the grid is converted from alternating current (AC) to direct current (DC) for storage in the BESS.
- The energy is stored and the battery management system continuously monitors and controls the flow of energy and optimizes how batteries are charged/ discharged.
- When there is a need for more energy on the grid, energy is discharged from the BESS and converted from DC to AC to feed back into the grid.

