

2020 ANNUAL DRINKING WATER SYSTEM SUMMARY REPORT Beachville – Loweville Subdivision Water System

1. GENERAL INFORMATION

Oxford County prepares a report summarizing system operation and water quality for every municipal drinking water system annually. The reports detail the latest water quality testing results, water quantity statistics and any adverse conditions that may have occurred for the previous year. They are available for review by the end of February on the Oxford County website at <u>www.oxfordcounty.ca/drinkingwater</u> or by contacting the Public Works Department.

All efforts have been made to ensure the information presented in this report is accurate. If you have any questions or comments concerning the report please contact the County of Oxford at the address and phone number listed below or by email at <u>publicworks@oxfordcounty.ca</u>.

Drinking Water System:	Beachville – Loweville Subdivision Water System
Drinking Water System Number:	2200000674
Drinking Water System Owner & Contact Information:	Oxford County Public Works Department Water Services P.O. Box 1614 21 Reeve Street Woodstock, ON N4S 7Y3 Telephone: 519-539-9800 Toll Free: 866-537-7778 Email: publicworks@oxfordcounty.ca
Reporting Period:	January 1, 2020 – December 31, 2020

1.1. System Description

The Beachville – Loweville Subdivision Water System is a Small Municipal Water system as defined by Regulation 170/03 and serves a population of approximately 207. The system consists of one well that is secure groundwater. The water is treated with sodium hypochlorite for disinfection and in 2020 approximately 277 L of the chemical was used in the water treatment process. This chemical is certified to meet standards set by the Standards Council of Canada or American National Standards Institute.

The treatment facility houses pumps, monitoring equipment and a 40 m³ underground reservoir. A standby generator is available to run the facility in the event of a power failure. The system is maintained by licensed water system operators, who operate treatment and monitoring equipment and collect samples as specified by the Regulation. Alarms automatically notify operators in the event of failure of critical operational requirements.

1.2. Major Expenses

The Beachville Water System is one of 14 water systems that have revenues and expenses pooled for economy of scale purposes. The systems are combined into the Township Water financial system and in 2020 had forecasted operating and maintenance expenditures of approximately \$2,000,000.

In addition to regular operational and maintenance expenditures Capital Improvement projects included:

- \$350,000 for replacement of distribution water mains in the Township systems
- \$170,000 Groundwater Model update for Beachville, Embro, Innerkip, Mt Elgin & Thamesford
- \$36,000 for improvements to water facilities

Capital Improvement projects for all systems included:

- \$280,000 to develop Countywide SCADA Master Plan for all water systems
- \$50,000 Updated Water Modelling
- \$10,000 Asset Management valuation for all treatment, pumping and storage facilities
- \$75,000 Two mobile generators

2. MICROBIOLOGICAL TESTING

2.1. E. coli and Total Coliform

Bacteriological tests for *E. coli* and total coliforms are taken weekly from the raw water at the facility and from the distribution system. Samples of treated water are not required for Small Municipal systems but may be taken periodically. Extra samples are taken after major repairs or maintenance work. Any *E. coli* or total coliform results above 0 in treated water must be reported to the Ministry of Environment, Conservation and Parks (MECP) and Medical Officer of Health (MOH). Resamples and any other required actions are taken as quickly as possible. The results from the 2020 sampling program are shown on the table below. There were no adverse test results from 53 treated water samples in this reporting period.

	Number of Samples	Range of E. coli Results Min - Max MAC = 0	Range of Total Coliform Results Min - Max MAC = 0
Raw	52	0	0
Distribution	53	0	0

2.2. Heterotrophic Plate Count (HPC)

HPC analyses are completed weekly from the distribution water for small systems. HPC should be less than 500 colonies per 1 mL. Results over 500 colonies per 1 mL may indicate a change in water quality but it is not considered an indicator of unsafe water. 2020 results are shown in the table below.

	Number of Samples	Range of HPC Min - Max
Distribution	52	0 - 270

3. CHEMICAL TESTING

The Safe Drinking Water Act requires periodic testing of the water for approximately 60 different chemical parameters. The latest results for all parameters are provided in Appendix A. The sampling frequency varies for different types and sizes of water systems and chemical parameters. If the concentration of a parameter is above half of the Maximum Allowable Concentration (MAC) under the Ontario Drinking Water Quality Standards, an increased testing frequency of once every three months is required by the Regulation. Where concerns regarding a parameter exist, the MECP can also require additional sampling be undertaken.

Information on the health effects and allowable limits of components in drinking water may be found on the MECP web page through the link provided in Appendix A. Additional information on common chemical parameters specific to the Beachville system is provided below.

3.1. Hardness

This is an aesthetic parameter that may affect the appearance of the water but is not related to health. Well water commonly has high levels of hardness and other minerals from being in contact with underground rock formations. Many households have water softeners to help reduce white calcium deposits and improve the efficiency of soaps. This information is included here to help set the water softener at the level recommended by the manufacturer. The Hardness in the Beachville – Loweville Subdivision System is 353 mg/L (equivalent to 25 grains).

3.2. Additional Testing Required by MECP

None

4. OPERATIONAL MONITORING

4.1. Chlorine Residual

Free chlorine levels of the treated water are monitored continuously at the discharge point of the Water Treatment Facility. In the distribution system, free chlorine is checked twice weekly at various locations. As a target, free chlorine residual within the distribution system should be above 0.20 mg/L. A free chlorine level lower than 0.05 mg/L must be reported and corrective action taken. There were no reportable incidents in 2020. A summary of the chlorine residual readings is provided in the table below.

4.2. Turbidity

Turbidity of treated water is continuously monitored at the treatment facility, as a change in turbidity can indicate an operational problem. The turbidity of untreated water from the well is checked weekly. Turbidity is measured in nephelometric turbidity units (NTU). Under Regulation 170/03 turbidity in groundwater is not reportable however turbidity should be < 1 NTU at the treatment plant and < 5 NTU in the distribution system. A summary of the monitoring results for 2020 is provided in the table below.

Parameter	Number of Tests or Monitoring Frequency	Range of Results (Min – Max) and Average
Chlorine residual in distribution (mg/L)	105	(0.11 – 1.31) 0.69
Chlorine residual after treatment (mg/L)	Continuous	(0.40 – 1.68) 1.10
Turbidity after treatment (NTU)	Continuous	(0.26 – 3.99) 0.57

5. WATER QUANTITY

Continuous monitoring of flowrates from supply wells into the treatment system and from the facility into the distribution system is required by Regulation 170/03. The Municipal Drinking Water License and Permit to Take Water issued by the MECP regulate the amount of water that can be utilized over a given time period. A summary of the 2020 flows are provided in the Table below and presented graphically in Appendix B.

Flow Summary	Quantity
Permit to Take Water Limit	657 m³/d
Municipal Drinking Water License Limit	656 m³/d
2020 Average Daily Flow	34 m³/d
2020 Maximum Daily Flow	101 m ³ /d
2020 Average Monthly Flow	1,037 m ³
2020 Total Amount of Water Supplied	12,443 m ³

A review of the available supply capacity and the anticipated growth forecasted for the community indicates that the system has sufficient capacity over the 20 year planning horizon.

6. NON-COMPLIANCE FINDINGS AND ADVERSE RESULTS

This section documents any known incidents of non-compliance or adverse results and the associated correction actions taken to resolve the issue. Non-compliance issues are typically identified by either the Operating Authority or the MECP Drinking Water Inspectors. The issues and associated required actions are documented by the Inspectors in the system's Annual Inspection Report. All non-compliance issues are investigated, corrective actions taken and documented using the County's Drinking Water Quality Management System (DWQMS) procedures.

6.1. Non-Compliance Findings

The annual MECP inspection took place in July 2020. There were no non-compliance findings and the 2020 Inspection Report rating was 100%.

6.2. Adverse Results

There were no adverse or reportable occurrences in 2020. Any adverse results from bacteriological, chemical samples or observations of operational conditions that indicate adverse water quality are reported as required and corrective actions are taken.

APPENDIX A: SUMMARY OF CHEMICAL RESULTS

UNDERSTANDING CHEMICAL TEST RESULTS

The following tables summarize the laboratory results of the chemical testing Oxford County is required to complete. Different types of parameters are required to be tested for at different frequencies as noted below. Explanations on the health impacts of these parameters can be found in the MECP document at https://cvc.ca/wp-content/uploads/2011/03/std01_079707.pdf PSIB 4449e01 titled "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines".

Results are shown as concentrations with units of either milligrams per litre (mg/L) or micrograms per litre (ug/L). 1 mg/L is equal to 1000 ug/L. The Maximum Acceptable Concentration (MAC) is the highest amount of a parameter that is acceptable in Municipal drinking water and can be found in the MECP Drinking Water Standards. The Method Detection Limit (MDL) is the lowest amount to which the laboratory can confidently measure. A result of "ND" stands for "Not Detected" and means that the concentration of the chemical is lower than the laboratory's equipment is capable of measuring.

Nitrate and nitrite samples are required every 3 months in normal operation.

Parameter	Result Range Min – Max (mg/L)	Average Result (mg/L)	MAC (mg/L)	MDL (mg/L)
Nitrite	ND	ND	1.0	0.003
Nitrate	1.92 – 2.37	2.11	10.0	0.006

Trihalomethane (THM) and total Haloacetic Acids (HAA) are by-products of the disinfection process. The samples are required every 3 months from the distribution system.

Parameter	Annual Average	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Trihalomethane (THM)	2020	15	100	0.37
Haloacetic Acids (HAA)	2020	ND	80	5.3

The following Table summarizes the most recent test results for Sodium and Fluoride. Testing and reporting any adverse results is required every 5 years.

Parameter	Sample Date	Result Value (mg/L)	MAC (mg/L)	MDL (mg/L)
Sodium	Aug 22/16	15.5	20.0*	0.01
Fluoride	"	0.73	1.5**	0.06

*Sodium levels between 20 – 200 mg/L must be reported every 5 years.

**Natural levels of fluoride between 1.5 - 2.4 mg/L must be reported every 5 years.

The following Table summarizes the most recent results for the Lead Testing Program. Lead samples are taken every 3 years. Levels of alkalinity and pH are monitored twice per year in the distribution system to ensure water quality is consistent and does not facilitate leaching of lead into the water.

	J I I I I I I I I I I		
Parameter	Result Range (Min - Max)	Number of Samples	Acceptable Level
Distribution Alkalinity	232 - 244	2	30 – 500mg/L
Distribution pH	7.5 – 7.6	2	6.5 – 8.5
Distribution Lead 2019	0.34	1	10 ug/L MAC

The following Table summarizes the most recent test results for Schedule 23. Testing is required every 5 years for secure groundwater wells.

Parameter	Sample Date	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Antimony	June 11/19	ND	6	0.09
Arsenic	"	1.0	10	0.2
Barium	"	78.2	1000	0.02
Boron	"	43.0	5000	2
Cadmium	"	0.032	5	0.003
Chromium	"	0.25	50	0.08
Mercury	"	ND	1	0.01
Selenium	"	0.45	50	0.04
Uranium	"	0.716	20	0.002

The following Table summarizes the most recent test results for Schedule 24. Testing is required every 5 years for secure groundwater wells.

	Sample	Result	MAC (ug/L)	MDL (ua/L)
Parameter	Date	(ug/L)	111/10 (ug/L)	MBE (ug/E)
Alachlor	May 24/16	ND	5	0.02
Atrazine + N-dealkylatedmetobolites	"	ND	5	0.01
Azinphos-methyl	"	ND	20	0.01
Benzene	"	ND	1	0.32
Benzo(a)pyrene	"	ND	0.01	0.004
Bromoxynil	"	ND	5	0.33
Carbaryl	"	ND	90	0.05
Carbofuran	"	ND	90	0.01
Carbon Tetrachloride	"	ND	2	0.16
Chlorpyrifos	"	ND	90	0.02
Chlorpyrifos	"	ND	90	0.02
Diazinon	"	ND	20	0.02
Dicamba	"	ND	120	0.20
1,2-Dichlorobenzene	"	ND	200	0.41
1,4-Dichlorobenzene	"	ND	5	0.36
1,2-Dichloroethane	"	ND	5	0.35
1,1-Dichloroethylene (vinylidene chloride)	"	ND	14	0.33
Dichloromethane	"	ND	50	0.35
2-4 Dichlorophenol	"	ND	900	0.15
2,4-Dichlorophenoxy acetic acid (2,4-D)	"	ND	100	0.19
Diclofop-methyl	"	ND	9	0.40
Dimethoate	"	ND	20	0.03
Diguat	"	ND	70	1
Diuron	"	ND	150	0.03
Glyphosate	"	ND	280	1
Malathion	"	ND	190	0.02
2-methyl-4chlorophenoxyacetic acid (MCPA)	"	ND	100	0.12
Metolachlor	"	ND	50	0.01
Metribuzin	"	ND	80	0.02
Monochlorobenzene	"	ND	80	0.30
Paraquat	"	ND	10	1
Pentachlorophenol	"	ND	60	0.15
Phorate	"	ND	2	0.01
Picloram	"	ND	190	1
Polychlorinated Biphenyls(PCB)	"	ND	3	0.04
Prometryne	"	ND	1	0.03
Simazine	"	ND	10	0.01
Terbufos	"	ND	1	0.01
Tetrachloroethylene	"	ND	10	0.35
2,3,4,6-Tetrachlorophenol	"	ND	100	0.14
Triallate	"	ND	230	0.01
Trichloroethylene	"	ND	5	0.43
2,4,6-Trichlorophenol	"	ND	5	0.25
Trifluralin	"	ND	45	0.02
Vinvl Chloride	"	ND	1	0.17

APPENDIX B: 2020 WATER QUANTITY SUMMARY

2020 ANNUAL DRINKING WATER SYSTEM SUMMARY REPORT Bright Water System

1. GENERAL INFORMATION

Oxford County prepares a report summarizing system operation and water quality for every municipal drinking water system annually. The reports detail the latest water quality testing results, water quantity statistics and any adverse conditions that may have occurred for the previous year. They are available for review by the end of February on the Oxford County website at <u>www.oxfordcounty.ca/drinkingwater</u> or by contacting the Public Works Department.

All efforts have been made to ensure the information presented in this report is accurate. If you have any questions or comments concerning the report please contact the County of Oxford at the address and phone number listed below or by email at <u>publicworks@oxfordcounty.ca</u>.

Drinking Water System:	Bright Water System
Drinking Water System Number:	220009050
Drinking Water System Owner & Contact Information:	Oxford County Public Works Department Water Services P.O. Box 1614 21 Reeve Street Woodstock, ON N4S 7Y3 Telephone: 519-539-9800 Toll Free: 866-537-7778 Email: publicworks@oxfordcounty.ca
Reporting Period:	January 1, 2020 – December 31, 2020

1.1. System Description

The Bright Water System is a Large Municipal Water system as defined by Regulation 170/03 and serves a population of approximately 436. The system consists of 2 well sources which are secure groundwater wells. The water is treated with sodium hypochlorite for disinfection and sodium silicate to sequester iron. In 2020, approximately 820 L of sodium hypochlorite and 820 L (1,160 kg) of sodium silicate were used in the water treatment process. These chemicals are certified to meet standards set by the Standards Council of Canada and American National Standards Institute.

The well facility houses pumps and treatment equipment. A separate pumping station houses high lift pumps, monitoring equipment, an 86 m³ in-ground reservoir and a 180 m³ standpipe. A standby generator is available to run the pump station in the event of a power failure. The system is maintained by licensed water system operators, who operate treatment and monitoring equipment and collect samples as specified by the Regulation. Alarms automatically notify operators in the event of failure of critical operational requirements.

1.2. Major Expenses

To be revised The Bright Water System is one of 14 water systems that have revenues and expenses pooled for economy of scale purposes. The systems are combined into the Township Water financial system and in 2020 had forecasted operating and maintenance expenditures of approximately \$2,000,000.

In addition to regular operational and maintenance expenditures Capital Improvement projects included:

• \$350,000 for replacement of distribution water mains in the Township systems

• \$36,000 for improvements to water facilities

Capital Improvement projects for all systems included:

- \$280,000 to develop Countywide SCADA Master Plan for all water systems
- \$50,000 Updated Water Modelling
- \$10,000 Asset Management valuation for all treatment, pumping and storage facilities
- \$75,000 Two mobile generators

2. MICROBIOLOGICAL TESTING

2.1. E. coli and Total Coliform

Bacteriological tests for *E. coli* and total coliforms are required weekly from the raw and treated water at the facility and from the distribution system. Extra samples are taken after major repairs or maintenance work. Any *E. coli* or total coliform results above 0 in treated water must be reported to the Ministry of Environment, Conservation and Parks (MECP) and Medical Officer of Health (MOH). Resamples and any other required actions are taken as quickly as possible. The results from the 2020 sampling program are shown on the table below. There were no adverse test results from 161 treated water samples in this reporting period.

	Number of Samples	Range of E. coli Results Min - Max MAC = 0	Range of Total Coliform Results Min - Max MAC = 0
Raw	104	0	0 - 1
Treated	52	0	0
Distribution	109	0	0

2.2 Heterotrophic Plate Count (HPC)

HPC analyses are required from the treated and distribution water. The tests are required weekly for treated water and for 25% of the required distribution system bacteriological samples. HPC should be less than 500 colonies per 1 mL. Results over 500 colonies per 1 mL may indicate a change in water quality but it is not considered an indicator of unsafe water. 2020 results are shown in the table below.

	Number of Samples	Range of HPC Min - Max	
Treated	52	0 - 4	
Distribution	24	0 - 180	

3. CHEMICAL TESTING

The Safe Drinking Water Act requires periodic testing of the water for approximately 60 different chemical parameters. The latest results for all parameters are provided in Appendix A. The sampling frequency varies for different types and sizes of water systems and chemical parameters. If the concentration of a parameter is above half of the Maximum Allowable Concentration (MAC) under the Ontario Drinking Water Quality Standards, an increased testing frequency of once every three months is required by the Regulation. Where concerns regarding a parameter exist, the MECP can also require additional sampling be undertaken.

Information on the health effects and allowable limits of components in drinking water may be found on the MECP web page through the link provided in Appendix A. Additional information on common chemical parameters specific to the Bright system is provided below.

3.1. Sodium

Sodium levels in drinking water are tested once every five years. The aesthetic objective is 200 mg/L meaning at levels less than this, the sodium will not impair the taste of the water. When sodium levels are above 20 mg/L the MECP and Medical Officer of Health are notified. Southwestern Public Health maintain an information page on sodium in drinking water at https://www.swpublichealth.ca/en/partners-and-professionals/resources/Health-Care-Providers/Alerts-Advisories-Updates/Advisories/ADV_HIA-Sodium-20201203.pdf in order to help people on sodium restricted diets control their sodium intake. The sodium level in Bright is 66.2 mg/L.

3.2. Hardness, Iron and Manganese

These are aesthetic parameters that may affect the appearance of the water but are not related to health. Well water commonly has high levels of hardness and other minerals from being in contact with underground rock formations. Many households have water softeners to help reduce white calcium deposits, improve the efficiency of soaps and reduce iron levels. This information is included here to help set the water softener at the level recommended by the manufacturer. Levels of iron less than 0.30 mg/L (ppm) are not considered to cause aesthetic problems such as discoloured water. In Bright, sodium silicate is added to keep the iron in suspension. Manganese is commonly found in conjunction with iron and also causes discoloured water. Manganese levels in this system are at or above the aesthetic objective of 0.05 mg/L

- Hardness is 394 mg/L (equivalent to 27 grains)
- Iron level was measured at 0.76 mg/L (ppm)
- Manganese level is 0.05mg/L (ppm)

3.3. Additional Testing Required by MECP

None.

4. OPERATIONAL MONITORING

4.1. Chlorine Residual

Free chlorine levels of the treated water are monitored continuously at the discharge point of the Water Treatment Facility. In the distribution system, free chlorine is checked twice weekly at various locations. As a target, free chlorine residual within the distribution system should be above 0.20 mg/L. A free chlorine level lower than 0.05 mg/L must be reported and corrective action taken. There were no reportable incidents in 2020. A summary of the chlorine residual readings is provided in the table below.

4.2. Turbidity

Turbidity of treated water is continuously monitored at the treatment facility, as a change in turbidity can indicate an operational problem. The turbidity of untreated water from the well is checked weekly. Turbidity is measured in nephelometric turbidity units (NTU). Under Regulation 170/03 turbidity in groundwater is not reportable however turbidity should be < 1 NTU at the treatment plant and < 5 NTU in the distribution system. A summary of the monitoring results for 2020 is provided in the table below.

Parameter	Number of Tests or Monitoring Frequency	Range of Results (Min – Max) and Average
Chlorine residual in distribution (mg/L)	Continuous	(0.69 – 2.77) 1.18
Chlorine residual after treatment (mg/L)	Continuous	(0.98 – 2.70) 1.32
Turbidity after treatment (NTU)	Continuous	(0.23 – 3.99) 0.56

5. WATER QUANTITY

Continuous monitoring of flowrates from supply wells into the treatment system and from the facility into the distribution system is required by Regulation 170/03. The Municipal Drinking Water License and Permit to Take Water issued by the MECP regulate the amount of water that can be utilized over a given time period. A summary of the 2020 flows are provided in the Table below and presented graphically in Appendix B.

Flow Summary	Quantity
Permit to Take Water Limit	327 m³/d
Municipal Drinking Water License Limit	589 m³/d
2020 Average Daily Flow	75 m³/d
2020 Maximum Daily Flow	185 m³/d
2020 Average Monthly Flow	2,799 m ³
2020 Total Amount of Water Supplied	27,345 m ³

While the PTTW for the system is 327 m³/d, the wells are not capable of producing this quantity. A more realistic maximum capacity of the system is approximately 296 m³/d. The County has begun exploration for an additional source.

6. NON-COMPLIANCE FINDINGS AND ADVERSE RESULTS

This section documents any known incidents of non-compliance or adverse results and the associated correction actions taken to resolve the issue. Non-compliance issues are typically identified by either the Operating Authority or the MECP Drinking Water Inspectors. The issues and associated required actions are documented by the Inspectors in the system's Annual Inspection Report. All non-compliance issues are investigated, corrective actions taken and documented using the County's Drinking Water Quality Management System (DWQMS) procedures.

6.1. Non-Compliance Findings

The annual MECP inspection took place in October 2020. There were two non-compliance findings for administrative issues. A Form 2 documenting a change in the location of the chemical injectors was not completed until 3 months after the work was done. The Operations and Maintenance manual and Process Flow diagram (P&ID) had not been updated to show the change of injection points. The Form 2 document was submitted by operations staff at the time of the change however it was not immediately printed and signed. The P&ID had several minor updates and the change of injection points was missed in the document review. The 2020 Inspection Report rating was 96%.

6.2. Adverse Results

There were no adverse or reportable occurrences in 2020. Any adverse results from bacteriological, chemical samples or observations of operational conditions that indicate adverse water quality are reported as required and corrective actions taken

APPENDIX A: SUMMARY OF CHEMICAL RESULTS

UNDERSTANDING CHEMICAL TEST RESULTS

The following tables summarize the laboratory results of the chemical testing Oxford County is required to complete. Different types of parameters are required to be tested for at different frequencies as noted below. Explanations on the health impacts of these parameters can be found in the MECP document at https://cvc.ca/wp-content/uploads/2011/03/std01_079707.pdf PSIB 4449e01 titled "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines".

Results are shown as concentrations with units of either milligrams per litre (mg/L) or micrograms per litre (ug/L). 1 mg/L is equal to 1000 ug/L. The Maximum Acceptable Concentration (MAC) is the highest amount of a parameter that is acceptable in Municipal drinking water and can be found in the MECP Drinking Water Standards. The Method Detection Limit (MDL) is the lowest amount to which the laboratory can confidently measure. A result of "ND" stands for "Not Detected" and means that the concentration of the chemical is lower than the laboratory's equipment is capable of measuring.

Nitrate and nitrite samples are required every 3 months in normal operation.

Parameter	Result Range Min – Max (mg/L)	Average Result (mg/L)	MAC (mg/L)	MDL (mg/L)
Nitrite	ND	ND	1.0	0.003
Nitrate	0.620 - 0.703	0.668	10.0	0.006

Trihalomethane (THM) and total Haloacetic Acids (HAA) are by-products of the disinfection process. The samples are required every 3 months from the distribution system.

Parameter	Annual Average	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Trihalomethane (THM)	2020	19	100	0.37
Haloacetic Acids (HAA)	2020	ND	80	5.3

The following Table summarizes the most recent test results for Sodium and Fluoride. Testing and reporting any adverse results is required every 5 years.

Parameter	Sample Date	Result Value (mg/L)	MAC (mg/L)	MDL (mg/L)
Sodium	May 21/19	66.2	20.0*	0.01
Fluoride	"	0.09	1.5**	0.06

*Sodium levels between 20 – 200 mg/L must be reported every 5 years. **Natural levels of fluoride between 1.5 – 2.4 mg/L must be reported every 5 years.

The following Table summarizes the most recent results for the Lead Testing Program. Lead samples are taken every 3 years. Levels of alkalinity and pH are monitored twice per year in the distribution system to ensure water quality is consistent and does not facilitate leaching of lead into the water

Parameter	Result Range (Min - Max)	Number of Samples	Acceptable Level		
Distribution Alkalinity	335 - 354	2	30 – 500mg/L		
Distribution pH	7.5 - 7.6	2	7.5 – 7.53		
Distribution Lead 2018	0.13 - 1.25	2	10 ug/L MAC		

The following Table summarizes the most recent test results for Schedule 23. Testing is required every 3 years for secure groundwater wells.

Parameter	Sample Date	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Antimony	May 21/19	ND	6	0.09
Arsenic	"	1.9	10	0.2
Barium	"	135	1000	0.01
Boron	"	48	5000	2
Cadmium	"	0.014	5	0.003
Chromium	"	0.13	50	0.03
Mercury	"	ND	1	0.01
Selenium	"	0.15	5	0.04
Uranium	"	2.02	20	0.002

The following Table summarizes the most recent test results for Schedule 24. Testing is required every 3 years for secure groundwater wells.

Parameter	Sample Date	Result Value	MAC (ug/L)	MDL (ug/L)
Alashlar	, luno 1/19		5	0.11
Atrazina I N dealladatedmatabalitaa	June 4/16		5 5	0.11
	"			0.12
Azinphos-methyi	"	ND	20	0.21
Benzene	"	ND	1	0.37
Benzo(a)pyrene	"	ND	0.01	0.004
Bromoxynii	"	ND	5	0.33
Carbaryl	"	ND	90	0.16
Carbofuran	"	ND	90	0.37
Carbon Tetrachloride	"	ND	2	0.41
Chlorpyrifos	"	ND	90	0.18
Diazinon	"	ND	20	0.081
Dicamba	"	ND	120	0.20
1,2-Dichlorobenzene	"	ND	200	0.50
1,4-Dichlorobenzene	"	ND	5	0.21
1,2-Dichloroethane	"	ND	5	0.43
1,1-Dichloroethylene(vinylidene chloride)	"	ND	14	0.41
Dichloromethane	"	ND	50	0.34
2-4 Dichlorophenol	"	ND	900	0.15
2,4-Dichlorophenoxy acetic acid (2,4-D)	"	ND	100	0.19
Diclofop-methyl	"	ND	9	0.40
Dimethoate	"	ND	20	0.12
Diquat	"	ND	70	1
Diuron	"	ND	150	0.87
Glyphosate	"	ND	280	6
Malathion	"	ND	190	0.091
Metolachlor	"	ND	50	0.092
2-methyl-4chlorophenoxyacetic acid	"	ND	100	0.12
(MCPA)				
Metribuzin	"	ND	80	0.12
Monochlorobenzene	"	ND	80	0.58
Paraquat	"	ND	10	1
Pentachlorophenol	"	ND	60	0.15
Phorate	"	ND	2	0.11
Picloram	"	ND	190	0.25
Polychlorinated Biphenyls(PCB)	"	ND	3	0.04
Prometryne	"	ND	1	0.23
Simazine	"	ND	10	0.15
Terbufos	"	ND	1	0.12
Tetrachloroethylene	"	ND	10	0.12
2 3 4 6-Tetrachlorophenol	"	ND	100	0.40
Triallate	"	ND	230	0.14
Trichloroethylene	"		5	0.10
2.4.6-Trichlorophenol	"		5	0.30
	"		<u> </u>	0.20
	"		40	0.12
		ND	1	0.17

APPENDIX B: 2020 WATER QUANTITY SUMMARY

2020 ANNUAL DRINKING WATER SYSTEM SUMMARY REPORT Brownsville Water System

Growing stronger together

1. GENERAL INFORMATION

Oxford County prepares a report summarizing system operation and water quality for every municipal drinking water system annually. The reports detail the latest water quality testing results, water quantity statistics and any adverse conditions that may have occurred for the previous year. They are available for review by the end of February on the Oxford County website at <u>www.oxfordcounty.ca/drinkingwater</u> or by contacting the Public Works Department.

All efforts have been made to ensure the information presented in this report is accurate. If you have any questions or comments concerning the report please contact the County of Oxford at the address and phone number listed below or by email at <u>publicworks@oxfordcounty.ca</u>.

Drinking Water System:	Brownsville Water System
Drinking Water System Number:	220009050
Drinking Water System Owner & Contact Information:	Oxford County Public Works Department Water Services P.O. Box 1614 21 Reeve Street Woodstock, ON N4S 7Y3 Telephone: 519-539-9800 Toll Free: 866-537-7778 Email: publicworks@oxfordcounty.ca
Reporting Period:	January 1, 2020 – December 31, 2020

1.1. System Description

The Brownsville Water System is a Large Municipal Water system as defined by Regulation 170/03 and serves a population of approximately 505. The system consists of 2 well sources that are secure groundwater wells. The water is treated with sodium hypochlorite for disinfection and in 2020 approximately 1,630 L of sodium hypochlorite was used. The chemical is certified to meet standards set by the Standards Council of Canada or American National Standards Institute.

The two well facilities house pumps and treatment equipment. A separate pumping station houses high lift pumps, monitoring equipment and a 197 m³ reservoir. A standby generator is available to run the pumping station in the event of a power outage. The system is maintained by licensed water system operators, who operate treatment and monitoring equipment and collect samples as specified by the Regulation. Alarms automatically notify operators in the event of failure of critical operational requirements.

1.2. Major Expenses

The Brownsville Water System is one of 14 water systems that have revenues and expenses pooled for economy of scale purposes. The systems are combined into the Township Water financial system and in 2018 had forecasted operating and maintenance expenditures of approximately \$2,000,000.

In addition to regular operational and maintenance expenditures Capital Improvement projects included:

- \$350,000 for replacement of distribution water mains in the Township systems
- \$36,000 for improvements to water facilities

Capital Improvement projects for all systems included:

- \$280,000 to develop Countywide SCADA Master Plan for all water systems
- \$50,000 Updated Water Modelling
- \$10,000 Asset Management valuation for all treatment, pumping and storage facilities
- \$75,000 Two mobile generators

2. MICROBIOLOGICAL TESTING

2.1. *E. coli* and Total Coliform

Bacteriological tests for *E. coli* and total coliforms are required weekly on the raw and treated water at the facility and in the distribution system. Extra samples are taken after major repairs or maintenance work. Any *E. coli* or total coliform results above 0 in treated water must be reported to the Ministry of Environment, Conservation and Parks (MECP) and Medical Officer of Health (MOH). Resamples and any other required actions are taken as quickly as possible. The results from the 2020 sampling program are shown on the table below. There were no adverse test results from 168 treated water samples in this reporting period.

	Number of Samples	Range of E. coli Results Min - Max MAC = 0	Range of Total Coliform Results Min - Max MAC = 0
Raw	104	0	0 - 114
Treated	57	0	0
Distribution	111	0	0

2.2. Heterotrophic Plate Count (HPC)

HPC analyses are required from the treated and distribution water. The tests are required weekly for treated water and for 25% of the required distribution system bacteriological samples. HPC should be less than 500 colonies per 1 mL. Results over 500 colonies per 1 mL may indicate a change in water quality but it is not considered an indicator of unsafe water. 2020 results are shown in the table below.

	Number of Samples	Range of HPC Min - Max
Treated	52	0 - 7
Distribution	24	0 - 330

3. CHEMICAL TESTING

The Safe Drinking Water Act requires periodic testing of the water for approximately 60 different chemical parameters. The latest results for all parameters are provided in Appendix A. The sampling frequency varies for different types and sizes of water systems. If the concentration of a parameter is above half of the Maximum Allowable Concentration (MAC) under the Ontario Drinking Water Quality Standards, an increased testing frequency of once every three months is required by the Regulation. Where concerns regarding a parameter exist, the MECP can also require additional sampling be undertaken.

Information on the health effects and allowable limits of components in drinking water may be found on the MECP web page through the link provided in Appendix A. Additional information on common chemical parameters specific to the Brownsville system is provided below.

3.1. Sodium

Sodium levels in drinking water are tested once every five years. The aesthetic objective is 200 mg/L meaning at levels less than this, sodium will not impair the taste of the water.

When sodium levels are above 20 mg/L the MECP and Medical Offer of Health are notified. Southwestern Public Health maintains an information page on sodium in drinking water at https://www.swpublichealth.ca/en/partners-and-professionals/resources/Health-Care-Providers/Alerts-Advisories-Updates/Advisories/ADV_HIA-Sodium-20201203.pdf in order to help people on sodium restricted diets control their sodium intake. The sodium level in Brownsville is 81.6 mg/L

3.2. Fluoride

Fluoride levels are sampled once every five years and levels above 1.5 mg/L must be reported to the MECP and Medical Officer of Health. Levels under 2.4 mg/L are considered safe for consumption however at levels between 1.5 and 2.4 mg/L fluoride may cause staining or pitting of teeth in children less than 6 years old. Further information on fluoride can be found on the Southwestern Public Health web page at https://www.swpublichealth.ca/en/partners-and-professionals/resources/Health-Care-Providers/Alerts-Advisories-Updates/Advisories/ADV_HIA-Fluoride-20201203.pdf

Oxford County does not add fluoride to the water at any of its drinking water systems however the Brownsville system has naturally occurring fluoride levels of 1.77 mg/L.

3.3. Hardness

This is an aesthetic parameter that may affect the appearance of the water but is not related to health. Well water commonly has high levels of hardness and other minerals from being in contact with underground rock formations. In Oxford County many households have water softeners to help reduce white calcium deposits and improve the efficiency of soaps. Water in the Brownsville System is naturally soft at 71 mg/L hardness (equivalent to 5 grains) and a water softener should not be needed.

3.4. Additional Testing Required by MECP

The Maximum Allowable Concentration (MAC) for arsenic was reduced from 25 ug/L to 10 ug/L in 2018. In Brownsville, an increased testing frequency of once every three months is required as the average arsenic level is above 5 ug/L. Results are summarized in Appendix A.

4. OPERATIONAL MONITORING

4.1. Chlorine Residual

Free chlorine levels of the treated water are monitored continuously at the discharge point of the pumping station and in the distribution system. As a target, free chlorine residual within the distribution system should be above 0.20 mg/L. A free chlorine level lower than 0.05 mg/L must be reported and corrective action taken. There were no reportable incidents in 2020. A summary of the chlorine residual readings is provided in the table below.

4.2. Turbidity

Turbidity of treated water is continuously monitored at the pumping station, as a change in turbidity can indicate an operational problem. The turbidity of untreated water from each well is checked weekly. Turbidity is measured in nephelometric turbidity units (NTU). Under Regulation 170/03 turbidity in groundwater is not reportable however turbidity should be < 1 NTU at the treatment plant and < 5 NTU in the distribution system. A summary of the monitoring results for 2020 is provided in the table below.

Parameter	Number of Tests or Monitoring Frequency	Range of Results (Min – Max) and Average
Chlorine residual in distribution (mg/L)	Continuous	(0.16 – 1.74) 1.09
Chlorine residual after treatment (mg/L)	"	(0.76 – 1.81) 1.17
Turbidity after treatment (NTU)	"	(0.07 – 2.19) 0.10

5. WATER QUANTITY

Continuous monitoring of flowrates from supply wells into the treatment system and from the facility into the distribution system is required by Regulation 170/03. The Municipal Drinking Water License and Permit to Take Water issued by the MECP regulate the amount of water that can be utilized over a given time period. A summary of the 2020 flows are provided in the table below and presented graphically in Appendix B.

Flow Summary	
Permit to Take Water Limit	366 m³/d
Municipal Drinking Water License Limit	366 m³/d
2020 Average Daily Flow	94 m³/d
2020 Maximum Daily Flow	218 m³/d
2020 Average Monthly Flow	2,856 m ³
2020 Total Amount of Water Supplied	34,435 m ³

A review of the available supply capacity and the anticipated growth forecasted for the community indicates that the system has sufficient capacity over the 20 year planning horizon.

6. NON-COMPLIANCE FINDINGS AND ADVERSE RESULTS

This section documents any known incidents of non-compliance or adverse results and the associated correction actions taken to resolve the issue. Non-compliance issues are typically identified by either the Operating Authority or the MECP Drinking Water Inspectors. The issues and associated required actions are documented by the Inspectors in the system's Annual Inspection Report.

All non-compliance issues are investigated, corrective actions taken and documented using the County's Drinking Water Quality Management System (DWQMS) procedures.

6.1. Non-Compliance Findings

The Annual MECP Inspection for the Brownsville Drinking Water System took place in August 2020. There was one non-compliance for failing to take a quarterly sample for arsenic. When a parameter in Schedule 23 or 24 exceeds ½ the maximum allowable concentration for the parameter a quarterly sample is required. The sample required for the last quarter of 2019 was not taken although the chain of custody indicated the sample was required. The missed sample was not noted until after the required time to take it had elapsed. The 2020 Inspection Report rating was 98%.

6.2. Adverse Results

There were no adverse or reportable occurrences in 2020. Any adverse results from bacteriological, chemical samples or observations of operational conditions that indicate adverse water quality are reported as required and corrective actions taken.

APPENDIX A: SUMMARY OF CHEMICAL RESULTS

UNDERSTANDING CHEMICAL TEST RESULTS

The following tables summarize the laboratory results of the chemical testing Oxford County is required to complete. Different types of parameters are required to be tested for at different frequencies as noted below. Explanations on the health impacts of these parameters can be found in the MECP document at https://cvc.ca/wp-content/uploads/2011/03/std01_079707.pdf PSIB 4449e01 titled "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines".

Results are shown as concentrations with units of either milligrams per litre (mg/L) or micrograms per litre (ug/L). 1 mg/L is equal to 1000 ug/L. The Maximum Acceptable Concentration (MAC) is the highest amount of a parameter that is acceptable in Municipal drinking water and can be found in the MECP Drinking Water Standards. The Method Detection Limit (MDL) is the lowest amount to which the laboratory can confidently measure. A result of "ND" stands for "Not Detected" and means that the concentration of the chemical is lower than the laboratory's equipment is capable of measuring.

Parameter	Result/Range Min – Max(mg/L)	Average Result (mg/L)	MAC (mg/L)	MDL (mg/L)
Nitrite	ND	ND	1.0	0.003
Nitrate	0.006 - 0.009	0.007	10.0	0.006

Nitrate and nitrite samples are required every 3 months in normal operation.

Trihalomethane (THM) and total Haloacetic Acids (HAA) are by-products of the disinfection process. The samples are required every 3 months from the distribution system.

Parameter	Annual Average	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Trihalomethane (THM)	2020	60	100	0.37
Total Haloacetic Acids (HAA)	2020	23	80	5.3

The following Table summarizes the most recent test results for Sodium and Fluoride. Testing and reporting any adverse results is required every 5 years.

Parameter	Sample Date	Result Value (mg/L)	MAC (mg/L)	MDL (mg/L)
Sodium	May 28 /19	81.6	20.0*	0.01
Fluoride	"	1.77	1.5**	0.06

*Sodium levels between 20 – 200 mg/L must be reported every 5 years.

**Natural levels of fluoride between 1.5 – 2.4 mg/L must be reported every 5 years

The following Table summarizes the most recent results for the Lead Testing Program. Lead samples are taken every 3 years. Levels of alkalinity and pH are monitored twice per year in the distribution system to ensure water quality is consistent and does not facilitate leaching of lead into the water.

Parameter	Result Range (Min – Max)	Number of Samples	Acceptable Level
Distribution Alkalinity	150 – 155	2	30 – 500 mg/L
Distribution pH	8.3 – 8.5	2	6.5 – 8.5
Distribution Lead 2015	0.06 - 0.14	2	10 ug/L MAC

The following Table summarizes the most recent test results for Schedule 23. Testing is required every 3 years for secure groundwater wells.

Parameter	Sample Date	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Antimony	May 28/19	ND	6	0.09
Arsenic	Annual average	5.7	10	0.2
Barium	May 28/19	32.6	1000	0.01
Boron	"	259	5000	2
Cadmium	"	ND	5	0.003
Chromium	"	0.12	50	0.03
Mercury	"	ND	1	0.01
Selenium	"	ND	5	0.04
Uranium	"	0.046	20	0.002

	Sample Date	Result Value		
Parameter		(ug/L)	MAC (ug/L)	MDL (ug/L)
Alachlor	June 4/18	ND	5	0.11
Atrazine + N-dealkylatedmetobolites	66	ND	5	0.12
Azinphos-methyl	66	ND	20	0.21
Benzene	66	ND	1	0.37
Benzo(a)pyrene	66	ND	0.01	0.004
Bromoxynil	"	ND	5	0.33
Carbaryl	66	ND	90	0.16
Carbofuran	"	ND	90	0.37
Carbon Tetrachloride	"	ND	2	0.41
Chlorpyrifos	"	ND	90	0.18
Diazinon	"	ND	20	0.081
Dicamba	"	ND	120	0.20
1,2-Dichlorobenzene	"	ND	200	0.50
1,4-Dichlorobenzene	"	ND	5	0.21
1,2-Dichloroethane	"	ND	5	0.43
1,1-Dichloroethylene(vinylidene chloride)	"	ND	14	0.41
Dichloromethane	"	ND	50	0.34
2-4 Dichlorophenol	"	ND	900	0.15
2,4-Dichlorophenoxy acetic acid (2,4-D)	"	ND	100	0.19
Diclofop-methyl	"	ND	9	0.40
Dimethoate	"	ND	20	0.12
Diquat	"	ND	70	1
Diuron	"	ND	150	0.87
Glyphosate	"	ND	280	6
Malathion	"	ND	190	0.091
Metolachlor	"	ND	50	0.092
2-methyl-4chlorophenoxyacetic acid	"			
(MCPA)		ND	100	0.12
Metribuzin	66	ND	80	0.12
Monochlorobenzene	66	ND	80	0.58
Paraquat	66	ND	10	1
Pentachlorophenol	66	ND	60	0.15
Phorate	66	ND	2	0.11
Picloram	"	ND	190	0.25
Polychlorinated Biphenyls(PCB)	"	ND	3	0.04
Prometryne	"	ND	1	0.23
Simazine	"	ND	10	0.15
Terbufos	"	ND	1	0.12
Tetrachloroethylene	"	ND	10	0.45
2,3,4,6-Tetrachlorophenol	"	ND	100	0.14
Triallate	"	ND	230	0.10
Trichloroethylene	"	ND	5	0.38
2,4,6-Trichlorophenol	"	ND	5	0.25
Trifluralin	"	ND	45	0.12
Vinyl Chloride	"	ND	1	0.17

The following Table summarizes the most recent test results for Schedule 24. Testing is required every 3 years for secure groundwater wells.

APPENDIX B: 2020 WATER QUANTITY SUMMARY

2020 ANNUAL DRINKING WATER SYSTEM SUMMARY REPORT Dereham Centre Water System

1. GENERAL INFORMATION

Oxford County prepares a report summarizing system operation and water quality for every municipal drinking water system annually. The reports detail the latest water quality testing results, water quantity statistics and any adverse conditions that may have occurred for the previous year. They are available for review by the end of February on the Oxford County website at <u>www.oxfordcounty.ca/drinkingwater</u> or by contacting the Public Works Department.

All efforts have been made to ensure the information presented in this report is accurate. If you have any questions or comments concerning the report please contact the County of Oxford at the address and phone number listed below or by email at <u>publicworks@oxfordcounty.ca</u>.

Drinking Water System:	Dereham Centre Water System
Drinking Water System Number:	2200001510
Drinking Water System Owner & Contact Information:	Oxford County Public Works Department Water Services P.O. Box 1614 21 Reeve Street Woodstock, ON N4S 7Y3 Telephone: 519-539-9800 Toll Free: 866-537-7778 Email: <u>publicworks@oxfordcounty.ca</u>
Reporting Period:	January 1, 2020 – December 31, 2020

1.1. System Description

The Dereham Centre Water System is a Small Municipal Water system as defined by Regulation 170/03 and serves a population of approximately 48. The system consists of one groundwater well and a treatment facility. The water is treated with sodium hypochlorite for disinfection and sodium silicate to sequester iron. In addition, since 2018, an arsenic removal filtration system has been piloted at the facility, treating a portion of the supplied water.

In 2020 approximately 91 L of sodium hypochlorite and 117 L of sodium silicate was used in the water treatment process. The chemicals are certified to meet standards set by the Standards Council of Canada or American National Standards Institute.

The treatment facility houses pumps, treatment and monitoring equipment and a 37 m³ underground reservoir. A standby generator is available to run the facility in the event of a power failure. The system is maintained by licensed water system operators, who operate treatment and monitoring equipment and collect samples as specified by the Regulation. Alarms automatically notify operators in the event of failure of critical operational requirements.

1.2. Major Expenses

The Dereham Centre Water System is one of 14 water systems that have revenues and expenses pooled for economy of scale purposes. The systems are combined into the Township Water financial system and in 2020 had forecasted operating and maintenance expenditures of approximately \$2,000,000.

In addition to regular operational and maintenance expenditures Capital Improvement projects included:

- \$350,000 MD-80 Filters for Arsenic (Treatability study & implementation)
- \$350,000 for replacement of distribution water mains in the Township systems
- \$36,000 for improvements to water facilities

Capital Improvement projects for all systems included:

- \$280,000 to develop Countywide SCADA Master Plan for all water systems
- \$50,000 Updated Water Modelling
- \$10,000 Asset Management valuation for all treatment, pumping and storage facilities
- \$75,000 Two mobile generators

2. MICROBIOLOGICAL TESTING

2.1. E. coli and Total Coliform

Bacteriological tests for *E. coli* and total coliforms are taken weekly from the raw water at the facility and from the distribution system. Samples of treated water are not required for Small Municipal systems but may be taken periodically. Extra samples are taken after major repairs or maintenance work. Any *E. coli* or total coliform results above 0 in treated water must be reported to the Ministry of Environment and Climate Change (MECP) and Medical Officer of Health (MOH). Resamples and any other required actions are taken as quickly as possible. The results from the 2020 sampling program are shown on the table below. There was one adverse test results from 54 treated water samples in this reporting period.

	Number of Samples	Range of E. coli Results Min - Max MAC = 0	Range of Total Coliform Results Min - Max MAC = 0
Raw	52	0	0 - 1
Distribution	54	0	0 - 2

2.2. Heterotrophic Plate Count (HPC)

HPC analyses are completed weekly from the distribution water for small systems. HPC should be less than 500 colonies per 1 mL. Results over 500 colonies per 1 mL may indicate a change in water quality but it is not considered an indicator of unsafe water. 2020 results are shown in the table below.

	Number of Samples	Range of HPC Min - Max	
Distribution	52	0 - 29	

3. CHEMICAL TESTING

The Safe Drinking Water Act requires periodic testing of the water for approximately 60 different chemical parameters. The latest results for all parameters are provided in Appendix A. The sampling frequency varies for different types and sizes of water systems and chemical parameters. If the concentration of a parameter is above half of the Maximum Allowable Concentration (MAC) under the Ontario Drinking Water Quality Standards, an increased testing frequency of once every three months is required by the Regulation. Where concerns regarding a parameter exist, the MECP can also require additional sampling be undertaken.

Information on the health effects and allowable limits of components in drinking water may be found on the MECP web page through the link provided in Appendix A. Additional information on common chemical parameters specific to the Dereham Centre system is provided below.

3.1. Hardness and Iron

These are aesthetic parameters that may affect the appearance of the water but are not related to health. Well water commonly has high levels of hardness and other minerals from being in contact with underground rock formations. Many households have water softeners to help reduce white calcium deposits and improve the efficiency of soaps. This information is included here to help set the water softener at the level recommended by the manufacturer. Levels of iron less than 0.30 mg/L (ppm) are not considered to cause problems such as discoloured water. In Dereham Centre sodium silicate is added to keep iron in suspension.

- Hardness is 255 mg/L (equivalent to 18 grains)
- Iron is 0.58 mg/L

3.2. Additional Testing Required by MECP

In January of 2018, the Maximum Allowable Concentration (MAC) for arsenic was reduced from 25 ug/L to 10 ug/L. In Dereham Centre the average raw water arsenic level is above 10 ug/L, thus treatment is now required. Treated water samples for arsenic are collected weekly to monitor the efficacy of the filtration and various operations such as before and after backwash cycles. Arsenic results in the treated water ranged from 6.4 to 9.0 ug/L and average 7.8 ug/L. No treated samples were above the MAC of 10 ug/L.

4. OPERATIONAL MONITORING

4.1. Chlorine Residual

Free chlorine levels of the treated water are monitored continuously at the discharge point of the Water Treatment Facility. In the distribution system, free chlorine is checked twice weekly at various locations. As a target, free chlorine residual within the distribution system should be above 0.20 mg/L. A free chlorine level lower than 0.05 mg/L must be reported and corrective action taken. There were no reportable incidents in 2020. A summary of the chlorine residual readings is provided in the table below.

4.2. Turbidity

Turbidity of treated water is continuously monitored at the treatment facility, as a change in turbidity can indicate an operational problem. The turbidity of untreated water from the well is checked weekly. Turbidity is measured in nephelometric turbidity units (NTU). Under Regulation 170/03 turbidity in groundwater is not reportable however turbidity should be < 1 NTU at the treatment plant and < 5 NTU in the distribution system. A summary of the monitoring results for 2020 is provided in the table below.

Parameter	Number of Tests or Monitoring Frequency	Range of Results (Min – Max) and Average
Chlorine residual in distribution (mg/L)	105	(1.00 – 1.95) 1.29
Chlorine residual after treatment (mg/L)	Continuous	(0.95 – 1.72) 1.32
Turbidity after treatment (NTU)	Continuous	(0.11 – 1.78) 0.23

5. WATER QUANTITY

Continuous monitoring of flowrates from the well into the treatment system and from the facility into the distribution system is required by Regulation 170/03. The Municipal Drinking Water License and Permit to Take Water issued by the MECP regulate the amount of water that can be utilized over a given time period. A summary of the 2020 flows are provided in the Table below and presented graphically in Appendix B.

Flow Summary	Quantity
Water Taking Limit	50 m³/d
Municipal Drinking Water License Limit	78 m³/d
2020 Average Daily Flow	7 m³/d
2020 Maximum Daily Flow	15 m³/d
2020 Average Monthly Flow	240 m ³
2020 Total Amount of Water Supplied	2,876 m ³

A review of the available supply capacity and the anticipated growth forecasted for the community indicates that the system has sufficient capacity over the 20 year planning horizon.

6. NON-COMPLIANCE FINDINGS AND ADVERSE RESULTS

This section documents any known incidents of non-compliance or adverse results and the associated correction actions taken to resolve the issue. Non-compliance issues are typically identified by either the Operating Authority or the MECP Drinking Water Inspectors. The issues and associated required actions are documented by the Inspectors in the system's Annual Inspection Report. All non-compliance issues are investigated, corrective actions taken and documented using the County's Drinking Water Quality Management System (DWQMS) procedures.

6.1. Non-Compliance Findings

The annual MECP inspection for 2020 took place in December 2020. There were no non-compliance findings and the Inspection Report rating was 100%.

6.2. Adverse Results

Any adverse results from bacteriological, chemical samples or observations of operational conditions that indicate adverse water quality are reported as required and corrective actions taken. Below is a summary of the one adverse/reportable occurrence for 2020 along with the corresponding resolution.

Treated or Distribution Water Sample with Positive Test for E.Coli or Total Coliform Bacteria			
2 TC cfu/100mL – treated distribution sample Aug 6, 2019	Reported and resamples were taken	Resample results acceptable Aug 8, 2019	

APPENDIX A: SUMMARY OF CHEMICAL RESULTS

UNDERSTANDING CHEMICAL TEST RESULTS

The following tables summarize the laboratory results of the chemical testing Oxford County is required to complete. Different types of parameters are required to be tested for at different frequencies as noted below. Explanations on the health impacts of these parameters can be found in the MECP document at <u>https://cvc.ca/wp-content/uploads/2011/03/std01_079707.pdf</u> PSIB 4449e01titled "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines".

Results are shown as concentrations with units of either milligrams per litre (mg/L) or micrograms per litre (ug/L). 1 mg/L is equal to 1000 ug/L. The Maximum Acceptable Concentration (MAC) is the highest amount of a parameter that is acceptable in Municipal drinking water and can be found in the MECP Drinking Water Standards. The Method Detection Limit (MDL) is the lowest amount to which the laboratory can confidently measure. A result of "ND" stands for "Not Detected" and means that the concentration of the chemical is lower than the laboratory's equipment is capable of measuring.

Nitrate and nitrite samples are required every 3 months in normal operation.

Parameter	Result Range Min – Max (mg/L)	Average Result (mg/L)	MAC (mg/L)	MDL (mg/L)
Nitrite	ND	ND	1.0	0.003
Nitrate	0.007 – 0.011	0.009	10.0	0.006

Trihalomethane (THM) and total Haloacetic Acids (HAA) are by-products of the disinfection process. The samples are required every 3 months from the distribution system.

Parameter	Annual Average	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Trihalomethane (THM)	2020	11	100	0.37
Haloacetic Acids (HAA)	2020	ND	80	5.3

The following Table summarizes the most recent test results for Sodium and Fluoride. Testing and reporting any adverse results is required every 5 years.

Parameter	Sample Date	Result Value (mg/L)	MAC (mg/L)	MDL (mg/L)
Sodium	Aug 22/16	13.0	20.0*	0.01
Fluoride	"	0.62	1.5**	0.06

*Sodium levels between 20 – 200 mg/L must be reported every 5 years.

**Natural levels of fluoride between 1.5 – 2.4 mg/L must be reported every 5 years.

The following Table summarizes the most recent results for the Lead Testing Program. Lead samples are taken every 3 years. Levels of alkalinity and pH are monitored twice per year in the distribution system to ensure water quality is consistent and does not facilitate leaching of lead into the water.

Parameter	Result Range (Min - Max)	Number of Samples	Acceptable Level
Distribution Alkalinity	229 - 241	2	30 – 500mg/L
Distribution pH	8.0 - 8.2	2	7.7 – 8.0
Distribution Lead 2018 -19	0.10 - 0.16	2	10 ug/L MAC

The following Table summarizes the most recent test results for Schedule 23. Testing is required every 5 years for secure groundwater wells.

Parameter	Sample Date	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Antimony	Dec 2/19	ND	6	0.09
Arsenic	Annual Average	7.8	10	0.2
Barium	Dec 2/19	239	1000	0.01
Boron	"	29	5000	0.2
Cadmium	"	ND	5	0.003
Chromium	"	0.10	50	0.5
Mercury	"	0.01	1	0.02
Selenium	"	ND	5	1
Uranium	"	0.112	20	0.001

The following Table summarizes the most recent test results for Schedule 24. Testing is required every 5 years for secure groundwater wells.

	Sample Date	Result Value		
Parameter		(ug/L)	MAC (ug/L)	MDL (ug/L)
Alachlor	Dec 2/19	ND	5	0.11
Atrazine + N-dealkylatedmetobolites	"	ND	5	0.12
Azinphos-methyl	"	ND	20	0.21
Benzene	"	ND	1	0.37
Benzo(a)pyrene	"	ND	0.01	0.004
Bromoxynil	"	ND	5	0.33
Carbaryl	"	ND	90	0.16
Carbofuran	"	ND	90	0.37
Carbon Tetrachloride	"	ND	2	0.41
Chlorpyrifos	"	ND	90	0.18
Diazinon	"	ND	20	0.081
Dicamba	"	ND	120	0.20
1,2-Dichlorobenzene	"	ND	200	0.50
1,4-Dichlorobenzene	"	ND	5	0.21
1,2-Dichloroethane	"	ND	5	0.43
1,1-Dichloroethylene(vinylidene chloride)	"	ND	14	0.41
Dichloromethane	"	ND	50	0.34
2-4 Dichlorophenol	"	ND	900	0.15
2,4-Dichlorophenoxy acetic acid (2,4-D)	"	ND	100	0.19
Diclofop-methyl	"	ND	9	0.40
Dimethoate	"	ND	20	0.12
Diquat	"	ND	70	1
Diuron	"	ND	150	0.87
Glyphosate	"	ND	280	6
Malathion	"	ND	190	0.091
Metolachlor	"	ND	50	0.092
2-methyl-4chlorophenoxyacetic acid	"			
(MCPA)		ND	100	0.12
Metribuzin	"	ND	80	0.12
Monochlorobenzene	"	ND	80	0.58
Paraquat	"	ND	10	1
Pentachlorophenol	"	ND	60	0.15
Phorate	"	ND	2	0.11
Picloram	"	ND	190	0.25
Polychlorinated Biphenyls(PCB)	"	ND	3	0.04
Prometryne	"	ND	1	0.23
Simazine	"	ND	10	0.15
Terbufos	"	ND	1	0.12
Tetrachloroethylene	"	ND	10	0.45
2,3,4,6-Tetrachlorophenol	"	ND	100	0.14
Triallate	"	ND	230	0.10
Trichloroethylene	"	ND	5	0.38
2,4,6-Trichlorophenol	"	ND	5	0.25
Trifluralin	"	ND	45	0.12
Vinyl Chloride	"	ND	1	0.17

APPENDIX B: 2020 WATER QUANTITY SUMMARY

2020 ANNUAL DRINKING WATER SYSTEM SUMMARY REPORT Drumbo-Princeton Water System

1. GENERAL INFORMATION

Oxford County prepares a report summarizing system operation and water quality for every municipal drinking water system annually. The reports detail the latest water quality testing results, water quantity statistics and any adverse conditions that may have occurred for the previous year. They are available for review by the end of February on the Oxford County website at <u>www.oxfordcounty.ca/drinkingwater</u> or by contacting the Public Works Department.

All efforts have been made to ensure the information presented in this report is accurate. If you have any questions or comments concerning the report please contact the County of Oxford at the address and phone number listed below or by email at <u>publicworks@oxfordcounty.ca</u>.

Drinking Water System:	Drumbo-Princeton Water System
Drinking Water System Number:	220007515
Drinking Water System Owner & Contact Information:	Oxford County Public Works Department Water Services P.O. Box 1614 21 Reeve Street Woodstock, ON N4S 7Y3 Telephone: 519-539-9800 Toll Free: 866-537-7778 Email: publicworks@oxfordcounty.ca
Reporting Period:	January 1, 2020 – December 31, 2020

1.1. System Description

The Drumbo-Princeton Drinking Water System is a Large Municipal Water system as defined by Regulation 170/03 and serves a population of approximately 1,573.

The system consists of three wells that are secure groundwater, connected to a central treatment facility all located in Drumbo. The facility houses high lift pumps, monitoring equipment, and a 516 m³ reservoir. Treatment consists of the addition of sodium hypochlorite for disinfection and sodium silicate to sequester iron. A standby generator is available to run the facility in the event of a power failure. The two communities are linked by a transmission main. In Princeton, there is a pressure control facility with chlorine residual monitoring, rechlorination equipment, and a 271 m³ storage standpipe.

In 2020, approximately 3,280 L of sodium hypochlorite and 1,845 L (2,610 kg) of sodium silicate were used in the water treatment process. These chemicals are certified to meet standards set by the Standards Council of Canada or American National Standards Institute.

The system is maintained by licensed water system operators, who operate treatment and monitoring equipment and collect samples as specified by the Regulation. Alarms automatically notify operators in the event of failure of critical operational requirements.

1.2. Major Expenses

The Drumbo-Princeton Water System is one of 14 water systems that have revenues and expenses pooled for economy of scale purposes. The systems are combined into the Township Water financial system and in 2020 had forecasted operating and maintenance expenditures of approximately \$2,000,000.

In addition to regular operational and maintenance expenditures Capital Improvement projects included:

- \$350,000 for replacement of distribution water mains in the Township systems
- \$36,000 for improvements to water facilities

Capital Improvement projects for all systems included:

- \$280,000 to develop Countywide SCADA Master Plan for all water systems
- \$50,000 Updated Water Modelling
- \$10,000 Asset Management valuation for all treatment, pumping and storage facilities
- \$75,000 Two mobile generators

2. MICROBIOLOGICAL TESTING

2.1. E. coli and Total Coliform

Bacteriological tests for *E. coli* and total coliforms are required weekly on the raw and treated water at the facility and in the distribution system. Extra samples are taken after major repairs or maintenance work. Any *E. coli* or total coliform results above 0 in treated water must be reported to the Ministry of Environment and Climate Change (MECP) and Medical Officer of Health (MOH). Resamples and any other required actions are taken as quickly as possible. The results from the 2020 sampling program are shown on the table below. There were no adverse test results from 176 treated water samples in this reporting period.

	Number of Samples	Range of E. coli Results Min - Max MAC = 0	Range of Total Coliform Results Min - Max MAC = 0
Raw	142	0	0 - 3
Treated	52	0	0
Distribution	124	0	0

2.2. Heterotrophic Plate Count (HPC)

HPC analyses are required from the treated and distribution water. The tests are required weekly for treated water and for 25% of the required distribution system bacteriological samples. HPC should be less than 500 colonies per 1 mL Results over 500 colonies per 1 mL may indicate a change in water quality but it is not considered an indicator of unsafe water. 2020 results are shown in the table below.

	Number of Samples	Range of HPC Min - Max	
Treated	52	0 - 2	
Distribution	36	0 - 7	

3. CHEMICAL TESTING

The Safe Drinking Water Act requires periodic testing of the water for approximately 60 different chemical parameters. The latest results for all parameters are provided in Appendix A. The sampling frequency varies for

different types and sizes of water systems and chemical parameters. If the concentration of a parameter is above half of the Maximum Allowable Concentration (MAC) under the Ontario Drinking Water Quality Standards, an increased testing frequency of once every three months is required by the Regulation. Where concerns regarding a parameter exist, the MECP can also require additional sampling be undertaken.

Information on the health effects and allowable limits of components in drinking water may be found on the MECP web page through the link provided in Appendix A. Additional information on common chemical parameters specific to the Drumbo-Princeton system is provided below.

3.1. Hardness, Iron and Manganese

These are aesthetic parameters that may affect the appearance of the water but are not related to health. Well water commonly has high levels of hardness and other minerals from being in contact with underground rock formations. Many households have water softeners to help reduce white calcium deposits, improve soap efficiency and reduce iron levels. This information is included here to help set the water softener at the level recommended by the manufacturer. Levels of iron less than 0.30 mg/L (ppm) are not considered to cause aesthetic problems such as discoloured water. In Drumbo-Princeton, sodium silicate is added to keep the iron in suspension at wells 1 and 2A. Manganese is commonly found in conjunction with iron and also causes discoloured water. Manganese levels in this system are above a new proposed aesthetic objective of 0.02 mg/L

- Hardness is 298 mg/L (equivalent to 21 grains)
- Iron level is 0.34 mg/L (ppm)
- Manganese level is 0.03 mg/L (ppm)

3.2. Additional Testing Required by MECP

None.

4. OPERATIONAL MONITORING

4.1. Chlorine Residual

Free chlorine levels of the treated water are monitored continuously at the discharge point of the Water Treatment Facility. In the distribution system, free chlorine is checked twice weekly at various locations. As a target, free chlorine residual within the distribution system should be above 0.20 mg/L. A free chlorine level lower than 0.05 mg/L must be reported and corrective action taken. There were no reportable incidents in 2020. A summary of the chlorine residual readings is provided in the table below.

4.2. Turbidity

Turbidity of treated water is continuously monitored at the treatment facility, as a change in turbidity can indicate an operational problem. The turbidity of untreated water from the well is checked weekly. Turbidity is measured in nephelometric turbidity units (NTU). Under Regulation 170/03 turbidity in groundwater is not reportable however turbidity should be < 1 NTU at the treatment plant and < 5 NTU in the distribution system. A summary of the monitoring results for 2020 is provided in the table below.

Parameter	Number of Tests or Monitoring Frequency	Range of Results (Min – Max) and Average	
Chlorine residual in distribution (mg/L)	Continuous	(0.51 – 3.10) 1.33	
Chlorine residual after treatment (mg/L)	Continuous	(0.30 – 3.34) 1.43	
Turbidity after treatment (NTU)	Continuous	(0.20 – 3.19) 0.31	

5. WATER QUANTITY

Continuous monitoring of flowrates from supply wells into the treatment system and from the facility into the distribution system is required by Regulation 170/03. The Municipal Drinking Water License and Permit to Take Water issued by the MECP regulate the amount of water that can be utilized over a given time period. A summary of the 2020 flows are provided in the Table below and presented graphically in Appendix B.

Flow Summary	Quantity
Permit to Take Water Limit	1,329 m³/d
Municipal Drinking Water License Limit	1,329 m³/d
2020 Average Daily Flow	291 m³/d
2020 Maximum Daily Flow	538 m ³
2020 Average Monthly Flow	8,890 m ³
2020 Total Amount of Water Supplied	106,678 m ³

A review of the available supply capacity and the anticipated growth forecasted for the community indicates that the system has sufficient capacity over the 20 year planning horizon.

6. NON-COMPLIANCE FINDINGS AND ADVERSE RESULTS

This section documents any known incidents of non-compliance or adverse results and the associated correction actions taken to resolve the issue. Non-compliance issues are typically identified by either the Operating Authority or the MECP Drinking Water Inspectors. The issues and associated required actions are documented by the Inspectors in the system's Annual Inspection Report. All non-compliance issues are investigated, corrective actions taken and documented using the County's Drinking Water Quality Management System (DWQMS) procedures.

6.1. Non-Compliance Findings

The 2020 MECP annual inspection had not taken place at the time this report was prepared. Due to Covid-19 restrictions data review will occur first with the field inspection will take place at a later date. Final inspection results will be presented to County Council in a memo. The 2019 Inspection Report rating was 100%.

6.2. Adverse Results

Any adverse results from bacteriological, chemical samples or observations of operational conditions that indicate adverse water quality are reported as required and corrective actions are taken. Below is a summary of the one adverse/reportable occurrences for 2020 along with the corresponding resolution.

Observations that the Drinking Water Quality may be Affected				
Loss of pressure at Princeton for 40 minutes due to power failure when standpipe was offline, July 7, 2020	Reported, issued a precautionary boil water advisory to Princeton customers. Restored pressure, flushed and collected samples.	Sample results were acceptable and the advisory was removed July 9, 2020		

APPENDIX A: SUMMARY OF CHEMICAL RESULTS

UNDERSTANDING CHEMICAL TEST RESULTS

The following tables summarize the laboratory results of the chemical testing Oxford County is required to complete. Different types of parameters are required to be tested for at different frequencies as noted below. Explanations on the health impacts of these parameters can be found in the MECP document at https://cvc.ca/wp-content/uploads/2011/03/std01_079707.pdf PSIB 4449e01.titled "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines".

Results are shown as concentrations with units of either milligrams per litre (mg/L) or micrograms per litre (ug/L). 1 mg/L is equal to 1000 ug/L. The Maximum Acceptable Concentration (MAC) is the highest amount of a parameter that is acceptable in Municipal drinking water and can be found in the MECP Drinking Water Standards. The Method Detection Limit (MDL) is the lowest amount to which the laboratory can confidently measure. A result of "ND" stands for "Not Detected" and means that the concentration of the chemical is lower than the laboratory's equipment is capable of measuring.

Nitrate and nitrite samples are required every 3 months in normal operation.

Parameter	Result Range Min – Max (mg/L)	Average Result (mg/L)	MAC (mg/L)	MDL (mg/L)
Nitrite	ND	ND	1.0	0.003
Nitrate	0.744 – 0.897	0.812	10.0	0.006

Trihalomethane (THM) and total Haloacetic Acids (HAA) are by-products of the disinfection process. The samples are required every 3 months from the distribution system.

Parameter	Annual Average	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Trihalomethane (THM)	2020	12	100	0.37
Haloacetic Acids (HAA)	2020	ND	80	5.3

The following Table summarizes the most recent test results for Sodium and Fluoride. Testing and reporting any adverse results is required every 5 years.

Parameter	Sample Date	Result Value (mg/L)	MAC (mg/L)	MDL (mg/L)
Sodium	Aug 22/16	10.5	20.0*	0.01
Fluoride	"	0.18	1.5**	0.06

*Sodium levels between 20 – 200 mg/L must be reported every 5 years.

**Natural levels of fluoride between 1.5 – 2.4 mg/L must be reported every 5 years.

The following Table summarizes the most recent results for the Lead Testing Program. Lead samples are taken every 3 years. Levels of alkalinity and pH are monitored twice per year in the distribution system to ensure water quality is consistent and does not facilitate leaching of lead into the water.

Parameter	Result Range (Min - Max)	Number of Samples	Acceptable Level
Distribution Alkalinity	2.44 - 2.60	4	30 – 500mg/L
Distribution pH	7.8	4	6.5 – 8.5
Distribution Lead 2018	0.12 - 0.40	4	10 ug/L MAC

The following Table summarizes the most recent test results for Schedule 23. Testing is required every 3 years for secure groundwater wells.

Parameter	Sample Date	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Antimony	May 21/19	ND	6	0.09
Arsenic	"	1.0	10	0.2
Barium	"	175	1000	0.01
Boron	"	18	5000	2
Cadmium	"	0.009	5	0.003
Chromium	"	0.14	50	0.03
Mercury	"	ND	1	0.01
Selenium	"	ND	5	0.04
Uranium	"	0.884	20	0.002

The following Table summarizes the most recent test results for Schedule 24.Testing is required every 3 years for secure groundwater wells.

	Sample Date	Result Value	MAC (ug/L)	MDL (ug/L)
Parameter	, h.m.a. 4/4.0	(ug/L)	ς σ <i>γ</i>	0.11
	June 4/18	ND	5	0.11
Atrazine + N-dealkylatedmetobolites	"	ND	5	0.12
Azinpnos-metnyi	"	ND	20	0.21
Benzene	"	ND	1	0.37
Benzo(a)pyrene	"	ND	0.01	0.004
Bromoxynil		ND	5	0.33
Carbaryl	"	ND	90	0.16
Carboturan		ND	90	0.37
Carbon Tetrachloride	"	ND	2	0.41
Chlorpyritos		ND	90	0.18
Diazinon		ND	20	0.081
Dicamba	"	ND	120	0.20
1,2-Dichlorobenzene	"	ND	200	0.50
1,4-Dichlorobenzene	"	ND	5	0.21
1,2-Dichloroethane	"	ND	5	0.43
1,1-Dichloroethylene(vinylidene chloride)	"	ND	14	0.41
Dichloromethane	"	ND	50	0.34
2-4 Dichlorophenol	"	ND	900	0.15
2,4-Dichlorophenoxy acetic acid (2,4-D)	"	ND	100	0.19
Diclofop-methyl	**	ND	9	0.40
Dimethoate	"	ND	20	0.12
Diquat	"	ND	70	1
Diuron	"	ND	150	0.87
Glyphosate	"	ND	280	6
Malathion	"	ND	190	0.091
Metolachlor	"	ND	50	0.092
2-methyl-4chlorophenoxyacetic acid	66		100	0.40
(MCPA)	"	ND	100	0.12
Metribuzin		ND	80	0.12
Monochlorobenzene		ND	80	0.58
Paraquat	"	ND	10	1
Pentachlorophenol		ND	60	0.15
Phorate	"	ND	2	0.11
Picloram	"	ND	190	0.25
Polychlorinated Biphenyls(PCB)	"	ND	3	0.04
Prometryne	"	ND	1	0.23
Simazine	"	ND	10	0.15
Terbufos	"	ND	1	0.12
Tetrachloroethylene	"	ND	10	0.45
2,3,4,6-Tetrachlorophenol	"	ND	100	0.14
Triallate	"	ND	230	0.10
Trichloroethylene	"	ND	5	0.38
2,4,6-Trichlorophenol	"	ND	5	0.25
Trifluralin	"	ND	45	0.12
Vinyl Chloride	"	ND	1	0.17

APPENDIX B: 2020 WATER QUANTITY SUMMARY

2020 ANNUAL DRINKING WATER SYSTEM SUMMARY REPORT Embro Water System

1. GENERAL INFORMATION

Oxford County prepares a report summarizing system operation and water quality for every municipal drinking water system annually. The reports detail the latest water quality testing results, water quantity statistics and any adverse conditions that may have occurred for the previous year. They are available for review by the end of February on the Oxford County website at <u>www.oxfordcounty.ca/drinkingwater</u> or by contacting the Public Works Department.

All efforts have been made to ensure the information presented in this report is accurate. If you have any questions or comments concerning the report please contact the County of Oxford at the address and phone number listed below or by email at <u>publicworks@oxfordcounty.ca</u>.

Drinking Water System:	Embro Water System
Drinking Water System Number:	220000656
Drinking Water System Owner & Contact Information:	Oxford County Public Works Department Water Services P.O. Box 1614 21 Reeve Street Woodstock, ON N4S 7Y3 Telephone: 519-539-9800 Toll Free: 866-537-7778 Email: publicworks@oxfordcounty.ca
Reporting Period:	January 1, 2020 – December 31, 2020

1.1. System Description

The Embro Water System is a Large Municipal Water system as defined by Regulation 170/03 and serves a population of approximately 841. The system consists of two well sources which are secure groundwater wells. The water is treated by filtration to remove iron and sodium hypochlorite for disinfection. In 2020, approximately 2,530 L of sodium hypochlorite was used in the water treatment process. The chemical is certified to meet standards set by the Standards Council of Canada or American National Standards Institute.

The treatment facility houses two anthracite filter beds, pumps, treatment equipment and a 350 m³ reservoir. The filter beds were upgraded to MD-80 in 2020 in order to increase the iron & manganese removal efficiencies. A standby generator is available to run the facility in the event of a power failure. The system is maintained by licensed water system operators, who operate treatment and monitoring equipment and collect samples as specified by the Regulation. Alarms automatically notify operators in the event of failure of critical operational requirements.

1.2. Major Expenses

The Embro Water System is one of 14 water systems that have revenues and expenses pooled for economy of scale purposes. The systems are combined into the Township Water financial system and in 2020 had forecasted operating and maintenance expenditures of approximately \$2,000,000.

In addition to regular operational and maintenance expenditures Capital Improvement projects in Embro included:

- \$290,000 for replacement of distribution water mains in the Township systems
- \$90,000 for filter upgrades
- \$35,000 for Township groundwater models
- \$75,000 for Township well rehabs

Capital Improvement projects for all systems included:

- \$280,000 to develop Countywide SCADA Master Plan for all water systems
- \$50,000 Updated Water Modelling
- \$10,000 Asset Management valuation for all treatment, pumping and storage facilities
- \$75,000 Two mobile generators

2. MICROBIOLOGICAL TESTING

2.1. *E. coli* and Total Coliform

Bacteriological tests for *E. coli* and total coliforms required weekly on the raw and treated water at the facility and in the distribution system. Extra samples are taken after major repairs or maintenance work. Any *E. coli* or total coliform results above 0 in treated water must be reported to the Ministry of Environment and Climate Change (MECP) and Medical Officer of Health (MOH). Resamples and any other required actions are taken as quickly as possible. The results from the 2020 sampling program are shown on the table below. There was one adverse test results from 180 treated water samples in this reporting period.

		Range of E. coli	Range of Total Coliform
	Number of	Results	Results
	Samples	Min - Max	Min - Max
		MAC = 0	MAC = 0
Raw	104	0	0
Treated	52	0	0
Distribution	128	0	0 - 1

2.2. Heterotrophic Plate Count (HPC)

HPC analyses are required from the treated and distribution water. The tests are required weekly for treated water and for 25% of the required distribution system bacteriological samples. HPC should be less than 500 colonies per 1 mL. Results over 500 colonies per 1 mL may indicate a change in water quality but it is not considered an indicator of unsafe water. 2020 results are shown in the table below.

	Number of Samples	Range of HPC Min - Max
Treated	52	0 - 6
Distribution	36	0 - 7

3. CHEMICAL TESTING

The Safe Drinking Water Act requires periodic testing of the water for approximately 60 different chemical parameters. The latest results for all parameters are provided in Appendix A. The sampling frequency varies for different types and sizes of water systems and chemical parameters. If the concentration of a parameter is above half of the Maximum Allowable Concentration (MAC) under the Ontario Drinking Water Quality Standards, an increased testing frequency of once every three months is required by the Regulation. Where concerns regarding a parameter exist, the MECP can also require additional sampling be undertaken.

Information on the health effects and allowable limits of components in drinking water may be found on the MECP web page through the link provided in Appendix A. Additional information on common chemical parameters specific to the Embro system is provided below.

3.1. Sodium

Sodium levels in drinking water are tested once every five years. The aesthetic objective is 200 mg/L meaning at levels less than this, the sodium will not impair the taste of the water. When sodium levels are above 20 mg/L the MECP and MOH are notified. Southwestern Public Health maintain an information page on sodium in drinking water https://www.swpublichealth.ca/en/partners-and-professionals/resources/Health-Care-Providers/Alerts-Advisories-Updates/Advisories/ADV_HIA-Sodium-20201203.pdf in order to help people on sodium restricted diets control their sodium intake. The sodium level in Embro is 20.2 mg/L.

3.2. Hardness

This is an aesthetic parameter that may affect the appearance of the water but is not related to health. Well water commonly has high levels of hardness and other minerals from being in contact with underground rock formations. Many households have water softeners to help reduce white calcium deposits and improve the efficiency of soaps. This information is included here to help set the water softener at the level recommended by the manufacturer. The Hardness in the Embro System is 490 mg/L (equivalent to 34 grains).

3.2. Additional Testing Required by MECP

None.

4. OPERATIONAL MONITORING

4.1. Chlorine Residual

Free chlorine levels of the treated water are monitored continuously at the discharge point of the Water Treatment Facility. In the distribution system, free chlorine is checked twice weekly at various locations. As a target, free chlorine residual within the distribution system should be above 0.20 mg/L. A free chlorine level lower than 0.05 mg/L must be reported and corrective action taken. There were no reportable incidents in 2020. A summary of the chlorine residual readings is provided in the table below.

4.2. Turbidity

Turbidity of treated water is continuously monitored at the treatment facility, as a change in turbidity can indicate an operational problem. The turbidity of untreated water from the well is checked weekly. Turbidity is measured in nephelometric turbidity units (NTU). Under Regulation 170/03 turbidity in groundwater is not reportable however turbidity should be < 1 NTU at the treatment plant and < 5 NTU in the distribution system. A summary of the monitoring results for 2020 is provided in the table below.

Parameter	Number of Tests or Monitoring Frequency	Range of Results (Min – Max) and Average
Chlorine residual in distribution (mg/L)	Continuous	(0.30 – 1.66) 1.12
Chlorine residual after treatment (mg/L)	Continuous	(0.57 – 1.95) 1.33
Turbidity after treatment (NTU)	Continuous	(0.06 - 0.92) 0.08

5. WATER QUANTITY

Continuous monitoring of flowrates from supply wells into the treatment system and from the facility into the distribution system is required by Regulation 170/03. The Municipal Drinking Water License and Permit to Take Water issued by the MECP regulate the amount of water that can be utilized over a given time period. A summary of the 2020 flows are provided in the Table below and presented graphically in Appendix B.

Flow Summary	Quantity
Permit to Take Water Limit	917 m³/d
Municipal Drinking Water License Limit	916 m³/d
2020 Average Daily Flow	225 m ³ /d
2020 Maximum Daily Flow	443 m ³ /d
2020 Average Monthly Flow	6,880 m ³
2020 Total Amount of Water Supplied	82,563 m ³

A review of the available supply capacity and the anticipated growth forecasted for the community indicates that the system has sufficient capacity over the 20 year planning horizon.

6. NON-COMPLIANCE FINDINGS AND ADVERSE RESULTS

This section documents any known incidents of non-compliance or adverse results and the associated correction actions taken to resolve the issue. Non-compliance issues are typically identified by either the Operating Authority or the MECP Drinking Water Inspectors. The issues and associated required actions are documented by the Inspectors in the system's Annual Inspection Report. All non-compliance issues are investigated, corrective actions taken and documented using the County's Drinking Water Quality Management System (DWQMS) procedures.

6.1. Non-Compliance Findings

The annual MECP inspection took place in December 2020. Inspection results were not available at the time this report was made. Final inspection results will be presented to County Council in a memo. The 2019 Inspection Report rating was 100%.

6.2. Adverse Results

Any adverse results from bacteriological, chemical samples or observations of operational conditions that indicate adverse water quality are reported as required and corrective actions are taken. Below is a summary of the adverse/reportable occurrence for 2020 along with the corresponding resolution.

Incident / Date	Corrective Action	Resolution / Date
Treated or Distribution Water	Sample with Positive Test for	E.Coli or Total Coliform Bacteria
1 TC cfu/100mL – treated distribution sample June 29, 2020	Reported and resamples were taken	Resample results acceptable July 02, 2020

APPENDIX A: SUMMARY OF CHEMICAL RESULTS

UNDERSTANDING CHEMICAL TEST RESULTS

The following tables summarize the laboratory results of the chemical testing Oxford County is required to complete. Different types of parameters are required to be tested for at different frequencies as noted below. Explanations on the health impacts of these parameters can be found at the MECP web site https://cvc.ca/wp-content/uploads/2011/03/std01_079707.pdf document # 4449e01 titled "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines".

Results are shown as concentrations with units of either milligrams per litre (mg/L) or micrograms per litre (ug/L). 1 mg/L is equal to 1000 ug/L. The Maximum Acceptable Concentration (MAC) is the highest amount of a parameter that is acceptable in Municipal drinking water and can be found in the MECP Drinking Water Standards. The Method Detection Limit (MDL) is the lowest amount to which the laboratory can confidently measure. A result of "ND" stands for "Not Detected" and means that the concentration of the chemical is lower than the laboratory's equipment is capable of measuring.

Nitrate and nitrite samples are required every 3 months in normal operation.

Parameter	Resu Min – M	It Range /lax (mg/L)	Average Result (mg/l	L) MAC (mg/L)	MDL (mg/L)
Nitrite		ND	ND	1.0	0.003
Nitrate	0.047	7 – 0.069	0.047	10.0	0.006

Trihalomethane (THM) and total Haloacetic Acids (HAA) are by-products of the disinfection process. The samples are required every 3 months from the distribution system.

Parameter	Annual Average	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Trihalomethane (THM)	2020	18.0	100	0.37
Haloacetic Acids (HAA)	2020	10.7	80	5.3

The following Table summarizes the most recent test results for Sodium and Fluoride. Testing and reporting any adverse results is required every 5 years.

Parameter	Sample Date	Result Value (mg/L)	MAC (mg/L)	MDL (mg/L)
Sodium	May21/19	20.2	20.0*	0.01
Fluoride	Aug 23/16	1.37	1.5**	0.06

*Sodium levels between 20 – 200 mg/L must be reported every 5 years.

**Natural levels of fluoride between 1.5 – 2.4 mg/L must be reported every 5 years.

The following Table summarizes the most recent results for the Lead Testing Program. Lead samples are taken every 3 years. Levels of alkalinity and pH are monitored twice per year in the distribution system to ensure water quality is consistent and does not facilitate leaching of lead into the water.

Parameter	Result Range (Min - Max)	Number of Samples	Acceptable Level
Distribution Alkalinity	205 - 215	4	30 – 500mg/L
Distribution pH	7.6 - 7.7	4	6.5 – 8.5
Distribution Lead 2018	0.19 - 1.76	4	10 ug/L MAC

The following Table summarizes the most recent test results for Schedule 23. Testing is required every 3 years for secure groundwater wells.

Parameter	Sample Date	Result Value(ug/L)	MAC (ug/L)	MDL (ug/L)
Antimony	May 21/19	ND	6	0.09
Arsenic	"	0.3	10	0.2
Barium	"	56.3	1000	0.01
Boron	"	78	5000	2
Cadmium	"	ND	5	0.003
Chromium	"	ND	50	0.08
Mercury	"	ND	1	0.02
Selenium	"	ND	5	0.04
Uranium	"	0.032	20	0.002

The following Table summarizes the most recent test results for Schedule 24. Testing is required every 3 years for secure groundwater wells.

	Sample Date	Result Value		
Parameter		(ug/L)	MAC (ug/L)	MDL (ug/L)
Alachlor	June 4/18	ND	5	0.11
Atrazine + N-dealkylatedmetobolites	"	ND	5	0.12
Azinphos-methyl	"	ND	20	0.21
Benzene	"	ND	1	0.37
Benzo(a)pyrene	"	ND	0.01	0.004
Bromoxynil	"	ND	5	0.33
Carbaryl	"	ND	90	0.16
Carbofuran	"	ND	90	0.37
Carbon Tetrachloride	"	ND	2	0.41
Chlorpyrifos	"	ND	90	0.18
Diazinon	"	ND	20	0.081
Dicamba	"	ND	120	0.20
1,2-Dichlorobenzene	"	ND	200	0.50
1,4-Dichlorobenzene	"	ND	5	0.21
1,2-Dichloroethane	"	ND	5	0.43
1,1-Dichloroethylene(vinylidene chloride)	"	ND	14	0.41
Dichloromethane	"	ND	50	0.34
2-4 Dichlorophenol	"	ND	900	0.15
2,4-Dichlorophenoxy acetic acid (2,4-D)	"	ND	100	0.19
Diclofop-methyl	"	ND	9	0.40
Dimethoate	"	ND	20	0.12
Diquat	"	ND	70	1
Diuron	"	ND	150	0.87
Glyphosate	"	ND	280	6
Malathion	"	ND	190	0.091
Metolachlor	"	ND	50	0.092
2-methyl-4chlorophenoxyacetic acid	"			
(MCPA)		ND	100	0.12
Metribuzin	"	ND	80	0.12
Monochlorobenzene	"	ND	80	0.58
Paraquat	"	ND	10	1
Pentachlorophenol	"	ND	60	0.15
Phorate	"	ND	2	0.11
Picloram	"	ND	190	0.25
Polychlorinated Biphenyls(PCB)	"	ND	3	0.04
Prometryne	"	ND	1	0.23
Simazine	"	ND	10	0.15
Terbufos	"	ND	1	0.12
Tetrachloroethylene	"	ND	10	0.45
2,3,4,6-Tetrachlorophenol	"	ND	100	0.14
Triallate	"	ND	230	0.10
Trichloroethylene	"	ND	5	0.38
2,4,6-Trichlorophenol	"	ND	5	0.25
Trifluralin	"	ND	45	0.12
Vinyl Chloride	"	ND	1	0.17

APPENDIX B: 2020 WATER QUANTITY SUMMARY

2020 ANNUAL DRINKING WATER SYSTEM SUMMARY REPORT Hickson Water System

1. GENERAL INFORMATION

Oxford County prepares a report summarizing system operation and water quality for every municipal drinking water system annually. The reports detail the latest water quality testing results, water quantity statistics and any adverse conditions that may have occurred for the previous year. They are available for review by the end of February on the Oxford County website at <u>www.oxfordcounty.ca/drinkingwater</u> or by contacting the Public Works Department.

All efforts have been made to ensure the information presented in this report is accurate. If you have any questions or comments concerning the report please contact the County of Oxford at the address and phone number listed below or by email at <u>publicworks@oxfordcounty.ca</u>.

Drinking Water System:	Hickson Water System
Drinking Water System Number:	2200006124
Drinking Water System Owner & Contact Information:	Oxford County Public Works Department Water Services P.O. Box 1614 21 Reeve Street Woodstock, ON N4S 7Y3 Telephone: 519-539-9800 Toll Free: 866-537-7778 Email: <u>publicworks@oxfordcounty.ca</u>
Reporting Period:	January 1, 2020 – December 31, 2020

1.1. System Description

The Hickson Water System is a Small Municipal Water system as defined by Regulation 170/03 and serves a population of approximately 102. The system consists of one groundwater well and a treatment facility. The water is treated with sodium hypochlorite (liquid chlorine) for disinfection and in 2020 approximately 221 litres of the chemical was used in the water treatment process. This chemical is certified to meet standards set by the Standards Council of Canada or American National Standards Institute.

The treatment facility houses pumps, monitoring equipment, and a 62 m³ underground reservoir. A standby generator is available to run the facility in the event of a power failure. The system is maintained by licensed water system operators, who operate treatment and monitoring equipment and collect samples as specified by the Regulation. Alarms automatically notify operators in the event of failure of critical operational requirements.

1.2. Major Expenses

The Hickson Water System is one of 14 water systems that have revenues and expenses pooled for economy of scale purposes. The systems are combined into the Township Water financial system and in 2020 had forecasted operating and maintenance expenditures of approximately \$2,000,000.

In addition to regular operations and maintenance for all water systems, capital improvement projects included:

- \$350,000 for replacement of distribution water mains in the Township systems
- \$36,000 for improvements to water facilities

Capital Improvement projects for all systems included:

- \$280,000 to develop Countywide SCADA Master Plan for all water systems
- \$50,000 Updated Water Modelling
- \$10,000 Asset Management valuation for all treatment, pumping and storage facilities
- \$75,000 Two mobile generators

2. MICROBIOLOGICAL TESTING

2.1. E. coli and Total Coliform

Bacteriological tests for *E. coli* and total coliforms are taken weekly from the raw water at the facility and from the distribution system. Samples of treated water are not required for Small Municipal systems but may be taken periodically. Extra samples are taken after major repairs or maintenance work. Any *E. coli* or total coliform results above 0 in treated water must be reported to the Ministry of the Environment, Conservation and Parks (MECP) and Medical Officer of Health (MOH). Resamples and any other required actions are taken as quickly as possible. The results from the 2020 sampling program are shown in the table below. There were no adverse test results from 52 treated water samples in this reporting period.

	Number of Samples	Range of E. coli Results Min - Max MAC = 0	Range of Total Coliform Results Min - Max MAC = 0
Raw	52	0 - 0	0 - 1
Distribution	52	0 - 0	0 - 0

2.2. Heterotrophic Plate Count (HPC)

HPC analyses are completed weekly from the distribution water for small systems. HPC should be less than 500 colonies per 1 mL. Results over 500 colonies per 1 mL may indicate a change in water quality but it is not considered an indicator of unsafe water. 2020 results are shown in the table below.

	Number of Samples	Range of HPC Min - Max
Distribution	52	0 - 8

3. CHEMICAL TESTING

The Safe Drinking Water Act requires periodic testing of the water for approximately 60 different chemical parameters. The latest results for all parameters are provided in Appendix A. The sampling frequency varies for different types and sizes of water systems and chemical parameters. If the concentration of a parameter is above half of the Maximum Allowable Concentration (MAC) under the Ontario Drinking Water Quality Standards, an increased testing frequency of once every three months is required by the Regulation. Where concerns regarding a parameter exist, the MECP can also require additional sampling be undertaken.

Information on the health effects and allowable limits of components in drinking water may be found on the MECP web page through the link provided in Appendix A. Additional information on common chemical parameters specific to the Hickson system is provided below.

3.1. Hardness

Hardness is an aesthetic parameter that may affect the appearance of the water but is not related to health. Well water commonly has high levels of hardness and other minerals from being in contact with underground rock formations. Many households have water softeners to help reduce white calcium deposits and improve the efficiency of soaps. This information is included here to help set the water softener at the level recommended by the manufacturer. The Hardness in the Hickson System is 287 mg/L (equivalent to 20 grains).

3.2. Additional Testing Required by MECP

None.

4. OPERATIONAL MONITORING

4.1. Chlorine Residual

Free chlorine levels of the treated water are monitored continuously at the discharge point of the Water Treatment Facility. In the distribution system, free chlorine is checked twice weekly at various locations. As a target, free chlorine residual within the distribution system should be above 0.20 mg/L. A free chlorine level lower than 0.05 mg/L must be reported and corrective action taken. There were no reportable incidents in 2020. A summary of the chlorine residual readings is provided in the table below.

4.2. Turbidity

Turbidity of treated water is continuously monitored at the treatment facility, as a change in turbidity can indicate an operational problem. The turbidity of untreated water from the well is checked weekly. Turbidity is measured in nephelometric turbidity units (NTU). Under Regulation 170/03 turbidity in groundwater is not reportable however turbidity should be < 1 NTU at the treatment plant and < 5 NTU in the distribution system. A summary of the monitoring results for 2020 is provided in the table below.

Parameter	Number of Tests or Monitoring Frequency	Range of Results (Min – Max) and Average
Chlorine residual in distribution (mg/L)	105	(0.40 – 1.25) 0.88
Chlorine residual after treatment (mg/L)	Continuous	(0.46 – 3.10) 1.10
Turbidity after treatment (NTU)	Continuous	(0.18 – 4.00) 0.24

5. WATER QUANTITY

Continuous monitoring of flow rates from supply wells into the treatment system and from the facility into the distribution system is required by Regulation 170/03. The Municipal Drinking Water License and Permit to Take Water issued by the MECP regulate the amount of water that can be utilized over a given time period. A summary of the 2020 flows are provided in the Table below and presented graphically in Appendix B.

Flow Summary	Quantity
Permit to Take Water Limit	300 m ³ /d
Municipal Drinking Water License Limit	389 m³/d
2020 Average Daily Flow	20 m³/d
2020 Maximum Daily Flow	52 m³/d
2020 Average Monthly Flow	599 m ³
2020 Total Amount of Water Supplied	7,182 m ³

A review of the available supply capacity and the anticipated growth forecasted for the community indicates that the system has sufficient capacity over the 20 year planning horizon.

6. NON-COMPLIANCE FINDINGS AND ADVERSE RESULTS

This section documents any known incidents of non-compliance or adverse results and the associated corrective actions taken to resolve the issue. Non-compliance issues are typically identified by either the Operating Authority or the MECP Drinking Water Inspectors. The issues and associated required actions are documented by the Inspectors in the system's Annual Inspection Report. All non-compliance issues are investigated,

corrective actions taken and documented using the County's Drinking Water Quality Management System (DWQMS) procedures.

6.1. Non-Compliance Findings

The annual MECP inspection took place in July 2020. There were no non-compliance findings and the 2020 Inspection Report rating was 100%.

6.2. Adverse Results

There were no adverse or reportable occurrences in 2020. Any adverse results from bacteriological, chemical samples or observations of operational conditions that indicate adverse water quality are reported as required and corrective actions are taken.

APPENDIX A: SUMMARY OF CHEMICAL RESULTS

UNDERSTANDING CHEMICAL TEST RESULTS

The following tables summarize the laboratory results of the chemical testing Oxford County is required to complete. Different types of parameters are required to be tested for at different frequencies as noted below. Explanations on the health impacts of these parameters can be found in the MECP document at <u>https://cvc.ca/wp-content/uploads/2011/03/std01_079707.pdf</u> PSIB 4449e01titled "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines".

Results are shown as concentrations with units of either milligrams per litre (mg/L) or micrograms per litre (ug/L). 1 mg/L is equal to 1000 ug/L. The Maximum Acceptable Concentration (MAC) is the highest amount of a parameter that is acceptable in Municipal drinking water and can be found in the MECP Drinking Water Standards. The Method Detection Limit (MDL) is the lowest amount to which the laboratory can confidently measure. A result of ND stands for "Not Detected" and means that the concentration of the chemical is lower than the laboratory's equipment is capable of measuring.

Nitrate and nitrite samples are required every 3 months in normal operation.

Parameter	Result Range Min – Max (mg/L)	Average Result (mg/L)	MAC (mg/L)	MDL (mg/L)
Nitrite	ND – 0.012	0.005	1.0	0.003
Nitrate	ND – 0.021	0.011	10.0	0.006

Trihalomethane (THM) and total Haloacetic Acids (HAA) are by-products of the disinfection process. The samples are required every 3 months from the distribution system.

Parameter	Annual Average	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Trihalomethane (THM)	2020	14.0	100	0.37
Haloacetic Acids (HAA)	2020	ND	80	5.3

The following Table summarizes the most recent test results for Sodium and Fluoride. Testing and reporting of any adverse results is required every 5 years.

Parameter	Sample Date	Result Value (mg/L)	MAC (mg/L)	MDL (mg/L)
Sodium	Aug 22/16	10.7	20.0*	0.01
Fluoride	Aug 22/16	1.34	1.5**	0.06

*Sodium levels between 20 – 200 mg/L must be reported every 5 years.

**Natural levels of fluoride between 1.5 – 2.4 mg/L must be reported every 5 years.

The following Table summarizes the most recent results for the Lead Testing Program. Lead samples are taken every 3 years. Levels of alkalinity and pH are monitored twice per year in the distribution system to ensure water quality is consistent and does not facilitate leaching of lead into the water.

Parameter	Result Range (Min - Max)	Number of Samples	Acceptable Level
Distribution Alkalinity	242 – 249	2	30 – 500mg/L
Distribution pH	7.6 – 7.6	2	6.5 – 8.5
Distribution Lead 2018	0.09 - 0.17	2	10 ug/L MAC

The following Table summarizes the most recent test results for Schedule 23. Testing is required every 5 years for secure groundwater wells.

Parameter	Sample Date	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Antimony	May 21, 2019	ND	6	0.09
Arsenic	"	ND	10	0.20
Barium	"	53.5	1000	0.02
Boron	"	27	5000	2.0
Cadmium	"	ND	5	0.003
Chromium	"	0.18	50	0.08
Mercury	"	ND	1	0.01
Selenium	"	ND	50	0.04
Uranium	"	0.04	20	0.002

Paramotor	Sampla Data	Result Value	MAC	MDL
	Sample Date	(ug/L)	(ug/L)	(ug/L)
Alachlor	May 30, 2016	ND	5	0.02
Atrazine + N-dealkylated metobolites	Ш	ND	5	0.01
Azinphos-methyl	"	ND	20	0.05
Benzene	"	ND	1	0.32
Benzo(a)pyrene	"	ND	0.01	0.004
Bromoxynil	"	ND	5	0.33
Carbaryl	"	ND	90	0.05
Carbofuran	"	ND	90	0.01
Carbon Tetrachloride	"	ND	2	0.16
Chlorpyrifos	"	ND	90	0.02
Diazinon	"	ND	20	0.02
Dicamba	"	ND	120	0.20
1,2-Dichlorobenzene	"	ND	200	0.41
1.4-Dichlorobenzene	"	ND	5	0.36
1.2-Dichloroethane	"	ND	5	0.35
1.1-Dichloroethylene (vinylidene chloride)	"	ND	14	0.33
Dichloromethane	"	ND	50	0.35
2-4 Dichlorophenol	"	ND	900	0.15
2.4-Dichlorophenoxy acetic acid (2.4-D)	"	ND	100	0.19
Diclofop-methyl	"	ND	9	0.40
Dimethoate	"	ND	20	0.03
Diguat	"	ND	70	1
Diuron	"	ND	150	0.03
Glyphosate	"	ND	280	1
Malathion	"	ND	190	0.02
Metolachlor	"	ND	50	0.01
Metribuzin	"	ND	80	0.02
Monochlorobenzene	"	ND	80	0.30
Paraguat	"	ND	10	1
Pentachlorophenol	"	ND	60	0.15
Phorate	"	ND	2	0.01
Picloram	"	ND	190	1
Polychlorinated Biphenyls (PCB)	"	ND	3	0.04
Prometryne	"	ND	1	0.03
Simazine	"	ND	10	0.01
Terbufos	"	ND	1	0.01
Tetrachloroethylene	"	ND	10	0.35
2.3.4.6-Tetrachlorophenol	"	ND	100	0.2
Triallate	"	ND	230	0.01
Trichloroethylene	"	ND	5	0.44
2.4.6-Trichlorophenol	"	ND	5	0.25
Trifluralin	"	ND	45	0.02
Vinvl Chloride	"	ND	1	0.17

The following Table summarizes the most recent test results for the Organic parameters in Schedule 24. Testing is required every 5 years for secure groundwater wells.

APPENDIX B: 2020 WATER QUANTITY SUMMARY

2020 ANNUAL DRINKING WATER SYSTEM SUMMARY REPORT Ingersoll Water System

1. GENERAL INFORMATION

Oxford County prepares a report summarizing system operation and water quality for every municipal drinking water system annually. The reports detail the latest water quality testing results, water quantity statistics and any adverse conditions that may have occurred for the previous year. They are available for review by the end of February on the Oxford County website at <u>www.oxfordcounty.ca/drinkingwater</u> or by contacting the Public Works Department.

All efforts have been made to ensure the information presented in this report is accurate. If you have any questions or comments concerning the report please contact the County of Oxford at the address and phone number listed below or by email at <u>publicworks@oxfordcounty.ca</u>.

Drinking Water System:	Ingersoll Water System
Drinking Water System Number:	220000692
Drinking Water System Owner & Contact Information:	Oxford County Public Works Department Water & Wastewater Services P.O. Box 1614 21 Reeve Street Woodstock, ON N4S 7Y3 Telephone: 519-539-9800 Toll Free: 866-537-7778 Email: publicworks@oxfordcounty.ca
Reporting Period:	January 1, 2020 – December 31, 2020

1.1. System Description

The Ingersoll Water System is a Large Municipal Water system as defined by Regulation 170/03 and serves a population of approximately 13,600. There are seven groundwater wells and Water Treatment Facilities (WTF) serving the Ingersoll systems as follows:

Merritt Street WTF – Well 2 Hamilton Road WTF – Well 3 Canterbury Street WTF – Well 5 West Street WTF – Well 7 (Not operational in 2020) Dunn's Road WTF – Well 8 Thompson Road WTF – Well 10 Wallace Line WTF – Well 11 (Not operational in 2020)

Due to the elevated levels of naturally occurring hydrogen sulphide, the WTF's with the exception of Wallace Line have hydrogen sulphide removal equipment consisting of an oxidation and filtration process. The filters also improve the water quality by reducing other parameters such as turbidity and iron.

Each WTF has an in-ground reservoir, automated chlorine injection system, monitoring and alarm equipment, and supplies water directly to the distribution system. In 2020, approximately 198,501 litres of sodium hypochlorite (liquid chlorine) and 1,020 kg of chlorine gas were used in the water treatment process. These chemicals are certified to meet standards set by the Standards Council of Canada or American National Standards Institute.

Storage capacity is provided by a 2,840 m³ water tower and a 3,290 m³ reservoir at the Merritt Street WTF. Standby generators are located at Merritt Street, Thompson Road and Dunn's Road WTF's to provide electrical power to these facilities during power outages.

The system is maintained by licensed water system operators, who operate the treatment and monitoring equipment and collect samples as specified by the Regulations. Microbiological and chemical samples are analyzed at certified laboratories. A SCADA (Supervisory Control and Data Acquisition) system controls the normal operation of the facilities and collects operational data. Alarms automatically notify operators in the event of failure of critical operational requirements.

1.2. Major Expenses

In 2020 the Ingersoll Water System had forecasted operating and maintenance expenditures of approximately \$1,300,000. Capital Improvement projects included:

- \$53,000 for improvements to water facilities
- \$20,000 for copper corrosion control study
- \$760,000 Town Projects (reconstruction and repairs)
- \$25,000 for consulting for tower repair & painting

Capital Improvement projects for all systems included:

- \$280,000 to develop Countywide SCADA Master Plan for all water systems
- \$50,000 Updated Water Modelling
- \$10,000 Asset Management valuation for all treatment, pumping and storage facilities
- \$75,000 Two mobile generators
- •

2. MICROBIOLOGICAL TESTING

2.1. E. coli and Total Coliform

Bacteriological tests for *E. coli* and total coliforms are required weekly on the raw and treated water at each facility and in the distribution system. Extra samples are taken after major repairs or maintenance work. Any *E. coli* or total coliform results above 0 in treated water must be reported to the Ministry of the Environment, Conservation and Parks (MECP) and Medical Officer of Health (MOH). Resamples and any other required actions are taken as quickly as possible. The results from the 2020 sampling program are shown in the table below. There were no adverse test result from 497 treated water samples in this reporting period.

	Number of Samples	Range of E. coli Results Min - Max MAC = 0	Range of Total Coliform Results Min - Max MAC = 0
Raw	188	0	0
Treated	194	0	0
Distribution	303	0	0

2.2 Heterotrophic Plate Count (HPC)

HPC analyses are required from the treated and distribution water. The tests are required weekly for treated water and for 25% of the required distribution system's bacteriological samples. HPC should be less than 500 colonies per 1 mL. Results over 500 colonies per 1 mL may indicate a change in water quality but it is not considered an indicator of unsafe water. 2020 results are shown in the table below.

	Number of Samples	Range of HPC Min - Max
Treated	193	0 - 9
Distribution	114	0 – 5

3. CHEMICAL TESTING

The Safe Drinking Water Act requires periodic testing of the water for approximately 60 different chemical parameters. The latest results for all parameters are provided in Appendix A. The sampling frequency varies for different types and sizes of water systems and chemical parameters. If the concentration of a parameter is above half of the Maximum Allowable Concentration (MAC) under the Ontario Drinking Water Quality Standards, an increased testing frequency of once every three months is required by the Regulation. Where concerns regarding a parameter exist, the MECP can also require additional sampling be undertaken.

Information on the health effects and allowable limits of components in drinking water may be found on the MECP web page through the link provided in Appendix A. Additional information on common chemical parameters specific to the Ingersoll system is provided below.

3.1. Sodium

Sodium levels in drinking water are tested once every five years. The aesthetic objective is 200 mg/L meaning at levels less than this, sodium will not impair the taste of water.

When sodium levels are above 20 mg/L the MECP and MOH are notified. Southwestern Public Health Unit maintains an information page on sodium in drinking water at https://www.swpublichealth.ca/en/partners-and-professionals/resources/Health-Care-Providers/Alerts-Advisories-Updates/Advisories/ADV_HIA-Sodium-20201203.pdf in order to help people on sodium restricted diets control their sodium intake. The average sodium level in the water is 52 mg/L (ranging from 45 to 61 mg/L) and the test results for each treatment facility are provided in Appendix A.

3.2. Fluoride

Fluoride levels are tested once every five years and levels above 1.5 mg/L must be reported to the MECP and MOH. Levels under 2.4 mg/L are considered safe for consumption, however at levels between 1.5 and 2.4 mg/L fluoride may cause staining or pitting of teeth in children less than 6 years old. Further information on fluoride can be found on the Southwestern Public Health Unit webpage at https://www.swpublichealth.ca/en/partners-and-professionals/resources/Health-Care-Providers/Alerts-Advisories-

https://www.swpublichealth.ca/en/partners-and-professionals/resources/Health-Care-Providers/Alerts-Advisories Updates/Advisories/ADV_HIA-Fluoride-20201203.pdf

Oxford County does not add fluoride to the water at any of its drinking water systems however the Ingersoll system has naturally occurring fluoride levels averaging 1.6 mg/L (ranging from 0.8 to 2.1 mg/L). The test results for each treatment facility are provided in Appendix A.

3.3. Hardness

Hardness is an aesthetic parameter that may affect the appearance of the water but is not related to health. Well water commonly has high levels of hardness and other minerals from being in contact with underground rock formations. Many households have water softeners to help reduce white calcium deposits and improve the efficiency of soaps. This information is included here to help set a water softener at the level recommended by the manufacturer. The Hardness in the system is 277 mg/L (equivalent to 19 grains/gallon).

3.4. Additional Testing Required by MECP

Additional testing for Sulfides is required for the Ingersoll Water System. The results are summarized in the table below.

Type of legal instrument: MECP Municipal Drinking Water License – June 9, 2020						
ParameterDate SampledResult Raw WaterResult Treated WaterAesthetic Objective (mg/L)MDL (mg/L)						
Sulfides – Merritt St	Offline	-	-	0.05	0.006	
Sulfides – Hamilton Rd	Dec 7, 2020	ND	ND	0.05	0.006	
Sulfides – Canterbury St	Dec 7, 2020	0.03	ND	0.05	0.006	
Sulfides – Dunn's Rd	Jan 13, 2020	2.07	ND	0.05	0.006	
Sulfides – Thompson Rd	Dec 7, 2020	0.13	ND	0.05	0.006	

4. OPERATIONAL MONITORING

4.1. Chlorine Residual

Free chlorine levels of the treated water are monitored continuously at the discharge point of each Water Treatment Facility. In the distribution system, free chlorine is monitored continuously at the water tower. As the target, the free chlorine residual within the distribution system should be above 0.20 mg/L. A free chlorine level lower than 0.05 mg/L must be reported and corrective action taken. A summary of the chlorine residual readings is provided in the table below.

4.2. Turbidity

Turbidity of treated water is continuously monitored at each treatment facility. A change in turbidity can indicate an operational problem. The turbidity of untreated water from each well is checked weekly. Turbidity is measured in nephelometric turbidity units (NTU). Under Regulation 170/03 turbidity in groundwater is not reportable however turbidity should be < 1 NTU at the treatment plant and < 5 NTU in the distribution system. A summary of the monitoring results for 2020 is provided in the table below.

Parameter	Monitoring Frequency	Range of Results (Min – Max) and Average
Chlorine Residual in Distribution (mg/L)	Continuous	(0.38 – 2.04) 0.98
Chlorine – Merritt St. WTF (mg/L)	Continuous	(0.23 – 3.41) 0.85
Chlorine – Hamilton Rd. WTF (mg/L)	Continuous	(0.46 – 2.44) 1.32
Chlorine – Canterbury St. WTF (mg/L)	Continuous	(0.64 – 2.58) 1.33
Chlorine – Dunn's Rd. WTF (mg/L)	Continuous	(0.35 – 2.57) 1.10
Chlorine – Thompson Rd. WTF (mg/L)	Continuous	(0.92 – 2.29) 1.48
Turbidity – Merritt St. WTF (NTU)	Continuous	(0.08 – 5.52) 0.39
Turbidity – Hamilton Rd. WTF (NTU)	Continuous	(0.04 – 2.54) 0.12
Turbidity – Canterbury St. WTF (NTU)	Continuous	(0.04 – 3.62) 0.11
Turbidity – Dunn's Rd. WTF (NTU)	Continuous	(0.07 – 4.73) 1.83
Turbidity – Thompson Rd. WTF (NTU)	Continuous	(0.04 - 0.44) 0.08

5. WATER QUANTITY

Continuous monitoring of flow rates from supply wells into the treatment system and from the facility into the distribution system is required by Regulation 170/03. The Municipal Drinking Water License and Permit to Take Water issued by the MECP regulate the amount of water that can be utilized over a given time period. A summary of the 2020 flows are provided in the Table below and presented graphically in Appendix B.

Flow Summary	Quantity
Permit to Take Water Limit	26,367 m ³ /d
Municipal Drinking Water License Limit	26,512 m ³ /d
2020 Average Daily Flow	4,786 m³/d
2020 Maximum Daily Flow	6,816 m ³ /d
2020 Average Monthly Flow	145,199 m ³
2020 Total Amount of Water Supplied	1,742,393 m ³

A review of the available supply capacity and the anticipated growth forecasted for the community indicates that the system has sufficient capacity over the 20 year planning horizon.

6. NON-COMPLIANCE FINDINGS AND ADVERSE RESULTS

This section documents any known incidents of non-compliance or adverse results and the associated correction actions taken to resolve the issue. Non-compliance issues are typically identified by either the Operating Authority or the MECP Drinking Water Inspectors. The issues and associated required actions are documented by the Inspectors in the system's Annual Inspection Report. All non-compliance issues are investigated, corrective actions taken and documented using the County's Drinking Water Quality Management System (DWQMS) procedures.

6.1. Non-Compliance Findings

The annual MECP inspection was scheduled to start late in January with the final report likely to be issued later in February 2021. Therefore a current Inspection Report rating and any non-compliance findings are unavailable from the final report.

6.2. Adverse Results

Any adverse results from bacteriological, chemical or observations of operational conditions that indicate adverse water quality are reported as required to the MECP and the MOH and corrective actions taken. Below is a summary of the adverse/reportable occurrences for 2019 along with the corresponding resolution.

Incident/Date Corrective Action Resolution/Date				
Low Chlorine Residual in Distribution System				
January 10, 2020	Report, flush and retest	Acceptable chlorine residual restored January 10, 2020		

APPENDIX A: SUMMARY OF CHEMICAL RESULTS

UNDERSTANDING CHEMICAL TEST RESULTS

The following tables summarize the laboratory results of the chemical testing Oxford County is required to complete. Different types of parameters are required to be tested for at different frequencies as noted below. Explanations on the health impacts of these parameters can be found in the MECP document at <u>https://cvc.ca/wp-content/uploads/2011/03/std01_079707.pdf</u> PSIB 4449e01 titled "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines".

Results are shown as concentrations with units of either milligrams per litre (mg/L) or micrograms per litre (ug/L). 1 mg/L is equal to 1000 ug/L. The Maximum Acceptable Concentration (MAC) is the highest amount of a parameter that is acceptable in Municipal drinking water and can be found in the MECP Drinking Water Standards. The Method Detection Limit (MDL) is the lowest amount to which the laboratory can confidently measure. A result of "ND" stands for "Not Detected" and means that the concentration of the chemical is lower than the laboratory's equipment is capable of measuring.

Parameter & Location	Result Range Min – Max (mg/L)	Average Result (mg/L)	MAC (mg/L)	MDL (mg/L)
Nitrite				
Merritt St.	Offline	Offline	1.0	0.003
Hamilton Rd.	ND	ND	1.0	0.003
Canterbury St.	ND	ND	1.0	0.003
Dunn's Rd.	ND	ND	1.0	0.003
Thompson Rd.	ND	ND	1.0	0.003
Nitrate				
Merritt St.	Offline	Offline	10.0	0.006
Hamilton Rd.	0.008 - 0.009	0.009	10.0	0.006
Canterbury St.	0.008 – 0.014	0.010	10.0	0.006
Dunn's Rd.	ND – 0.008	0.007	10.0	0.006
Thompson Rd.	ND - 0.090	0.027	10.0	0.006

Nitrate and nitrite samples are required every 3 months in normal operation.

Trihalomethane (THM) and total Haloacetic Acids (HAA) are by-products of the disinfection process. The samples are required every 3 months from the distribution system.

Parameter	Annual Average	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Trihalomethane (THM)	2020	21	100	0.37
Haloacetic Acids (HAA)	2020	6.6	80	5.3

The following Table summarizes the most recent test results for Sodium and Fluoride. Testing and reporting any adverse results is required every 5 years.

Parameter & Location	Sample Date	Result Value (mg/L)	MAC (mg/L)	MDL (mg/L)
Sodium				
Merritt St.	July 10/19	51.4	20.0*	0.01
Hamilton Rd.	June 5/19	47.9	20.0*	0.01
Canterbury St.	June 3/19	55.2	20.0*	0.01
Dunn's Rd.	June 3/19	61.2	20.0*	0.01
Thompson Rd.	June 3/19	45.5	20.0*	0.01
Fluoride				
Merritt St.	July 10/19	2.12	1.5**	0.06
Hamilton Rd.	May 27/19	0.77	1.5**	0.06
Canterbury St.	June 3/19	1.50	1.5**	0.06
Dunn's Rd.	June 3/19	1.96	1.5**	0.06
Thompson Rd.	June 3/19	1.57	1.5**	0.06

*Sodium levels between 20 – 200 mg/L must be reported every 5 years.

**Natural levels of fluoride between 1.5 – 2.4 mg/L must be reported every 5 years.

The following Table summarizes the most recent results for the Lead Testing Program. Lead samples are taken every 3 years. Levels of alkalinity and pH are monitored twice per year in the distribution system to ensure water quality is consistent and does not facilitate leaching of lead into the water.

Parameter	Result Range (Min - Max)	Number of Samples	Acceptable Level
Distribution Alkalinity	219 – 250	8	30 – 500mg/L
Distribution pH	7.4 – 7.6	8	6.5 – 8.5
Distribution Lead 2018	0.04 – 3.25	8	10 ug/L MAC

The following Tables summarize the most recent test results for the Inorganic parameters in Schedules 23. Testing is required every 3 years for secure groundwater wells.

	Well 2	Well 3	Well 5	MAC	MDI
Parameter	Result Value (ug/L)	Result Value (ug/L)	Result Value (ug/L)	$(\mu \alpha / L)$	$(\mu \alpha / L)$
	July 10, 2019	May 27, 2019	May 27, 2019	(ug/L)	(ug/L)
Antimony	ND	ND	ND	6	0.09
Arsenic	ND	ND	0.3	10	0.2
Barium	46.4	117	55.0	1000	0.02
Boron	132	44	88	5000	2
Cadmium	0.003	ND	ND	5	0.003
Chromium	ND	0.14	0.14	50	0.08
Mercury	ND	ND	ND	1	0.01
Selenium	ND	ND	ND	50	0.04
Uranium	0.045	0.091	0.187	20	0.002

Parameter	Well 8 Result Value (ug/L) May 27, 2019	<i>Well 10</i> Result Value (ug/L) May 27, 2019	MAC (ug/L)	MDL (ug/L)
Antimony	ND	ND	6	0.09
Arsenic	ND	ND	10	0.2
Barium	30.1	65.3	1000	0.02
Boron	157	103	5000	2
Cadmium	ND	ND	5	0.003
Chromium	0.24	0.11	50	0.08
Mercury	ND	ND	1	0.01
Selenium	ND	ND	50	0.04
Uranium	0.076	0.082	20	0.002

The following Tables summarize the most recent test results for the Organic parameters in Schedules 24. Testing is required every 3 years for secure groundwater wells.

	Well 2	Well 3	Well 5		
Parameter	Result Value	Result Value	Result Value	MAC	MDL
Farameter	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
	June 4, 2018	June 4, 2018	June 4,2018		
Alachlor	ND	ND	ND	5	0.02
Atrazine + N-dealkylatedmetobolites	ND	ND	ND	5	0.01
Azinphos-methyl	ND	ND	ND	20	0.05
Benzene	ND	ND	ND	1	0.32
Benzo(a)pyrene	ND	ND	ND	0.01	0.004
Bromoxynil	ND	ND	ND	5	0.33
Carbaryl	ND	ND	ND	90	0.05
Carbofuran	ND	ND	ND	90	0.01
Carbon Tetrachloride	ND	ND	ND	2	0.16
Chlorpyrifos	ND	ND	ND	90	0.02
Diazinon	ND	ND	ND	20	0.02
Dicamba	ND	ND	ND	120	0.20
1,2-Dichlorobenzene	ND	ND	ND	200	0.41
1,4-Dichlorobenzene	ND	ND	ND	5	0.36
1,2-Dichloroethane	ND	ND	ND	5	0.35
1,1-Dichloroethylene (vinylidene chloride)	ND	ND	ND	14	0.33
Dichloromethane	ND	ND	ND	50	0.35
2-4 Dichlorophenol	ND	ND	ND	900	0.15
2,4-Dichlorophenoxy acetic acid (2,4-D)	ND	ND	ND	100	0.19
Diclofop-methyl	ND	ND	ND	9	0.40
Dimethoate	ND	ND	ND	20	0.03
Diquat	ND	ND	ND	70	1
Diuron	ND	ND	ND	150	0.03
Glyphosate	ND	ND	ND	280	1
Malathion	ND	ND	ND	190	0.02
2-methyl-4chlorophenoxyacetic acid (MCPA)	ND	ND	ND	100	0.12
Metolachlor	ND	ND	ND	50	0.01
Metribuzin	ND	ND	ND	80	0.02
Monochlorobenzene	ND	ND	ND	80	0.30
Paraquat	ND	ND	ND	10	1
Pentachlorophenol	ND	ND	ND	60	0.15
Phorate	ND	ND	ND	2	0.01
Picloram	ND	ND	ND	190	1
Polychlorinated Biphenyls(PCB)	ND	ND	ND	3	0.04
Prometryne	ND	ND	ND	1	0.03
Simazine	ND	ND	ND	10	0.01
Terbufos	ND	ND	ND	1	0.01
Tetrachloroethylene	ND	ND	ND	10	0.35
2,3,4,6-Tetrachlorophenol	ND	ND	ND	100	0.20
Triallate	ND	ND	ND	230	0.01
Trichloroethylene	ND	ND	ND	5	0.44
2,4,6-Trichlorophenol	ND	ND	ND	5	0.25
Trifluralin	ND	ND	ND	45	0.02
Vinyl Chloride	ND	ND	ND	1	0.17

	Well 8	Well 10		
Parameter	Result Value	Result Value	MAC	MDL
Falamelei	(ug/L)	(ug/L)	(ug/L)	(ug/L)
	June 4, 2018	June 4, 2018		
Alachlor	ND	ND	5	0.02
Atrazine + N-dealkylatedmetobolites	ND	ND	5	0.01
Azinphos-methyl	ND	ND	20	0.05
Benzene	ND	ND	1	0.32
Benzo(a)pyrene	ND	ND	0.01	0.004
Bromoxynil	ND	ND	5	0.33
Carbaryl	ND	ND	90	0.05
Carbofuran	ND	ND	90	0.01
Carbon Tetrachloride	ND	ND	2	0.16
Chlorpyrifos	ND	ND	90	0.02
Diazinon	ND	ND	20	0.02
Dicamba	ND	ND	120	0.20
1,2-Dichlorobenzene	ND	ND	200	0.41
1,4-Dichlorobenzene	ND	ND	5	0.36
1,2-Dichloroethane	ND	ND	5	0.35
1,1-Dichloroethylene (vinylidene chloride)	ND	ND	14	0.33
Dichloromethane	ND	ND	50	0.35
2-4 Dichlorophenol	ND	ND	900	0.15
2,4-Dichlorophenoxy acetic acid (2,4-D)	ND	ND	100	0.19
Diclofop-methyl	ND	ND	9	0.40
Dimethoate	ND	ND	20	0.03
Diquat	ND	ND	70	1
Diuron	ND	ND	150	0.03
Glyphosate	ND	ND	280	1
Malathion	ND	ND	190	0.02
2-methyl-4chlorophenoxyacetic acid (MCPA)	ND	ND	100	0.12
Metolachlor	ND	ND	50	0.01
Metribuzin	ND	ND	80	0.02
Monochlorobenzene	ND	ND	80	0.30
Paraquat	ND	ND	10	1
Pentachlorophenol	ND	ND	60	0.15
Phorate	ND	ND	2	0.01
Picloram	ND	ND	190	1
Polychlorinated Biphenyls(PCB)	ND	ND	3	0.04
Prometryne	ND	ND	1	0.03
Simazine	ND	ND	10	0.01
Terbufos	ND	ND	1	0.01
Tetrachloroethylene	ND	ND	10	0.35
2,3,4,6-Tetrachlorophenol	ND	ND	100	0.20
Triallate	ND	ND	230	0.01
Trichloroethylene	ND	ND	5	0.44
2,4,6-Trichlorophenol	ND	ND	5	0.25
Trifluralin	ND	ND	45	0.02
Vinyl Chloride	ND	ND	1	0.17

APPENDIX B: 2020 WATER QUANTITY SUMMARY

Ingersoll Water System Capacity 17,357 m³/day

2020 ANNUAL DRINKING WATER SYSTEM SUMMARY REPORT Innerkip Water System

1. GENERAL INFORMATION

Oxford County prepares a report summarizing system operation and water quality for every municipal drinking water system annually. The reports detail the latest water quality testing results, water quantity statistics and any adverse conditions that may have occurred for the previous year. They are available for review by the end of February on the Oxford County website at <u>www.oxfordcounty.ca/drinkingwater</u> or by contacting the Public Works Department.

All efforts have been made to ensure the information presented in this report is accurate. If you have any questions or comments concerning the report please contact the County of Oxford at the address and phone number listed below or by email at <u>publicworks@oxfordcounty.ca</u>.

Drinking Water System:	Innerkip Water System
Drinking Water System Number:	260046995
Drinking Water System Owner & Contact Information:	Oxford County Public Works Department Water Services P.O. Box 1614 21 Reeve Street Woodstock, ON N4S 7Y3 Telephone: 519-539-9800 Toll Free: 866-537-7778 Email: publicworks@oxfordcounty.ca
Reporting Period:	January 1, 2020 – December 31, 2020

1.1. System Description

The Innerkip Water System is a Large Municipal Water system as defined by Regulation 170/03 and serves a population of approximately 1,290. The system consists of 2 well sources which are secure groundwater wells. The water is filtered to remove iron and manganese. Sodium hypochlorite is added as an oxidant and for disinfection. In 2020, approximately 6,970 L of sodium hypochlorite was used in the water treatment process. This chemical is certified to meet standards set by the Standards Council of Canada or American National Standards Institute.

The treatment facility houses filters, high lift pumps, monitoring equipment and a 700 m³ storage standpipe. There is a retention lagoon for backwash water from the filters which discharges to a tributary of the Thames River. A standby generator is available to run the facility in the event of a power failure. The system is maintained by licensed water system operators, who operate treatment and monitoring equipment and collect samples as specified by the Regulation. Alarms automatically notify operators in the event of failure of critical operational requirements.

1.2. Major Expenses

The Innerkip Water System is one of 14 water systems that have revenues and expenses pooled for economy of scale purposes. The systems are combined into the Township Water financial system and in 2020 had forecasted operating and maintenance expenditures of approximately \$2,000,000.

In addition to regular operational and maintenance expenditures Capital Improvement projects included:

- \$350,000 for replacement of distribution water mains in the Township systems
- \$170,000 Groundwater Model update for Beachville, Embro, Innerkip, Mt Elgin & Thamesford

• \$36,000 for improvements to water facilities

Capital Improvement projects for all systems included:

- \$280,000 to develop Countywide SCADA Master Plan for all water systems
- \$50,000 Updated Water Modelling
- \$10,000 Asset Management valuation for all treatment, pumping and storage facilities
- \$75,000 Two mobile generators

2. MICROBIOLOGICAL TESTING

2.1. E. coli and Total Coliform

Bacteriological tests for *E. coli* and total coliforms are taken weekly from the raw and treated water at the facility and from the distribution system. Extra samples are taken after major repairs or maintenance work. Any *E. coli* or total coliform results above 0 in treated water must be reported to the Ministry of Environment and Climate Change (MECP) and Medical Officer of Health (MOH). Resamples and any other required actions are taken as quickly as possible. The results from the 2020 sampling program are shown on the table below. There were no adverse test results from 175 treated water samples in this reporting period.

		Range of E. coli	Range of Total Coliform
	Number of	Results	Results
	Samples	Min - Max	Min - Max
		MAC = 0	MAC = 0
Raw	104	0	0 - 1
Treated	54	0	0
Distribution	121	0	0

2.2. Heterotrophic Plate Count (HPC)

HPC analyses are required from the treated and distribution water. The tests are required weekly for treated water and for 25% of the required distribution system bacteriological samples. HPC should be less than 500 colonies per 1 mL. Results over 500 colonies per 1 mL may indicate a change in water quality but it is not considered an indicator of unsafe water. 2020 results are shown in the table below.

	Number of Samples	Range of HPC Min - Max
Treated	52	0 - 3
Distribution	36	0 - 8

3. CHEMICAL TESTING

The Safe Drinking Water Act requires periodic testing of the water for approximately 60 different chemical parameters. The latest results for all parameters are provided in Appendix A. The sampling frequency varies for different types and sizes of water systems and chemical parameters. If the concentration of a parameter is above half of the Maximum Allowable Concentration (MAC) under the Ontario Drinking Water Quality Standards, an increased testing frequency of once every three months is required by the Regulation. Where concerns regarding a parameter exist, the MECP can also require additional sampling be undertaken.

Information on the health effects and allowable limits of components in drinking water may be found on the MECP web page through the link provided in Appendix A. Additional information on common chemical parameters specific to the Innerkip system is provided below.

3.1. Hardness

This is an aesthetic parameter that may affect the appearance of the water but is not related to health. Well water commonly has high levels of hardness and other minerals from being in contact with underground rock formations. Many households have water softeners to help reduce white calcium deposits and improve the

efficiency of soaps. This information is included here to help set the water softener at the level recommended by the manufacturer. The average hardness in the Innerkip system is 908 mg/L (equivalent to 64 grains).

3.2. Additional Testing Required by MECP

Testing of the lagoon backwash discharge is required for the Innerkip Water System. A summary of the monitoring results for 2020 is below.

Legal instrument: Municipal Drinking Water License issued December 1, 2018						
Result Range Average Number of N Parameter (Min–Max) mg/L mg/L Samples Limit (n						
Suspended Solids from lagoon backwash discharge	(4.00 - 51.0)	16.0	52	25 mg/L Annual Average	2.0	

4. OPERATIONAL MONITORING

4.1. Chlorine Residual

Free chlorine levels of the treated water are monitored continuously at the discharge point of the Water Treatment Facility. In the distribution system, free chlorine is checked twice weekly at various locations. As a target, free chlorine residual within the distribution system should be above 0.20 mg/L. A free chlorine level lower than 0.05 mg/L must be reported and corrective action taken. There were no reportable incidents in 2020. A summary of the chlorine residual readings is provided in the table below.

4.2. Turbidity

Turbidity of treated water is continuously monitored at the treatment facility, as a change in turbidity can indicate an operational problem. The turbidity of untreated water from the well is checked weekly. Turbidity is measured in nephelometric turbidity units (NTU). Under Regulation 170/03 turbidity in groundwater is not reportable however turbidity should be < 1 NTU at the treatment plant and < 5 NTU in the distribution system. A summary of the monitoring results for 2020 is provided in the table below.

Parameter	Number of Tests or Monitoring Frequency	Range of Results (Min – Max) and Average
Chlorine residual in distribution (mg/L)	Continuous	(0.24 – 2.12) 1.15
Chlorine residual after treatment (mg/L)	Continuous	(0.64 – 2.75) 1.40
Turbidity after treatment (NTU)	Continuous	(0.05 – 3.99) 0.07

5. WATER QUANTITY

Continuous monitoring of flowrates from supply wells into the treatment system and from the facility into the distribution system is required by Regulation 170/03. The Municipal Drinking Water License and Permit to Take Water issued by the MECP regulate the amount of water that can be utilized over a given time period. A summary of the 2020 flows are provided in the Table below and presented graphically in Appendix B.

Flow Summary	Quantity
Permit to Take Water Limit	1,728 m³/d
Municipal Drinking Water License Limit	1,728 m³/d
2020 Average Daily Flow	275 m³/d
2020 Maximum Daily Flow	541 m³/d
2020 Average Monthly Flow	8,376 m ³
2020 Total Amount of Water Supplied	100,517 m ³

A review of the available supply capacity and the anticipated growth forecasted for the community indicates that the system has sufficient capacity over the 20 year planning horizon.

6. NON-COMPLIANCE FINDINGS AND ADVERSE RESULTS

This section documents any known incidents of non-compliance or adverse results and the associated correction actions taken to resolve the issue. Non-compliance issues are typically identified by either the Operating Authority or the MECP Drinking Water Inspectors. The issues and associated required actions are documented by the Inspectors in the system's Annual Inspection Report. All non-compliance issues are investigated, corrective actions taken and documented using the County's Drinking Water Quality Management System (DWQMS) procedures.

6.1. Non-Compliance Findings

The annual MECP inspection took place in July 2020. There were no non-compliance findings and the 2020 Inspection Report rating was 100%.

6.2. Adverse Results

There were no adverse or reportable occurrences in 2020.

APPENDIX A: SUMMARY OF CHEMICAL RESULTS

UNDERSTANDING CHEMICAL TEST RESULTS

The following tables summarize the laboratory results of the chemical testing Oxford County is required to complete. Different types of parameters are required to be tested for at different frequencies as noted below. Explanations on the health impacts of these parameters can be found in the MECP document <u>https://cvc.ca/wp-content/uploads/2011/03/std01_079707.pdf</u> PIBS 4449e01 titled "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines".

Results are shown as concentrations with units of either milligrams per litre (mg/L) or micrograms per litre (ug/L). 1 mg/L is equal to 1000 ug/L. The Maximum Acceptable Concentration (MAC) is the highest amount of a parameter that is acceptable in Municipal drinking water and can be found in the MECP Drinking Water Standards. The Method Detection Limit (MDL) is the lowest amount to which the laboratory can confidently measure. A result of "ND" stands for "Not Detected" and means that the concentration of the chemical is lower than the laboratory's equipment is capable of measuring.

Parameter	Result Range	Average	MAC(mall)	MDL (ma/L)		
Falameter	Min – Max (mg/L)	Result (mg/L)	MAC (IIIg/L)	NDL (IIIg/L)		
Nitrite	ND	ND	1.0	0.003		
Nitrate	0.040 - 0.068	0.052	10.0	0.006		

Nitrate and nitrite samples are required every 3 months in normal operation.

Trihalomethane (THM) and total Haloacetic Acids (HAA) are by-products of the disinfection process. The samples are required every 3 months from the distribution system.

Parameter	Annual Average	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Trihalomethane (THM)	2020	24	100	0.37
Haloacetic Acids (HAA)	2020	11.5	80	5.3

The following Table summarizes the most recent test results for Sodium and Fluoride. Testing and reporting any adverse results is required every 5 years.

Parameter	Sample Date	Result Value (mg/L)	MAC (mg/L)	MDL (mg/L)
Sodium	Aug 22/16	15.8	20.0*	0.01
Fluoride	Feb 18/20	0.74	1.5**	0.06

*Sodium levels between 20 – 200 mg/L must be reported every 5 years.

**Natural levels of fluoride between 1.5 - 2.4 mg/L must be reported every 5 years.

The following Table summarizes the most recent results for the Lead Testing Program. Lead samples are taken every 3 years. Levels of alkalinity and pH are monitored twice per year in the distribution system to ensure water quality is consistent and does not facilitate leaching of lead into the water.

Parameter	Result Range (Min Max)	Number of Samples	Acceptable Level
Distribution Alkalinity	230 - 240	4	30 – 500mg/L
Distribution pH	7.3 – 7.4	4	6.5 – 8.5
Distribution Lead 2018	0.02 – 0.21	4	10 ug/L MAC

The following Table summarizes the most recent test results for Schedule 23. Testing is required every 3 years for secure groundwater wells.

Parameter	Sample Date	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Antimony	Feb 18/20	0.09	6	0.02
Arsenic	"	ND	10	0.2
Barium	"	72.5	1000	0.01
Boron	"	102	5000	2
Cadmium	"	0.007	5	0.003
Chromium	"	0.12	50	0.03
Mercury	"	ND	1	0.01
Selenium	"	ND	5	1
Uranium	"	0.697	20	0.001

	Sample Data			
Deremeter	Sample Date			
Alaphar	Eab 19/20			
Atrozino I N doplkylotodmotobolitop	red 10/20 "	ND	5	0.11
	"	ND	<u> </u>	0.12
Azinphos-methyi	"	ND	20	0.21
Benzene	"	ND	1	0.37
Benzo(a)pyrene	"	ND	0.01	0.004
Bromoxynii		ND	5	0.33
Carbaryl	"	ND	90	0.16
Carboturan		ND	90	0.37
Carbon Tetrachloride	"	ND	2	0.41
Chlorpyrifos		ND	90	0.18
Diazinon	ü	ND	20	0.081
Dicamba	"	ND	120	0.20
1,2-Dichlorobenzene	"	ND	200	0.50
1,4-Dichlorobenzene	"	ND	5	0.21
1,2-Dichloroethane	"	ND	5	0.43
1,1-Dichloroethylene(vinylidene chloride)	"	ND	14	0.41
Dichloromethane	"	ND	50	0.34
2-4 Dichlorophenol	"	ND	900	0.15
2,4-Dichlorophenoxy acetic acid (2,4-D)	"	ND	100	0.19
Diclofop-methyl	"	ND	9	0.40
Dimethoate	"	ND	20	0.12
Diquat	"	ND	70	1
Diuron	"	ND	150	0.87
Glyphosate	"	ND	280	6
Malathion	"	ND	190	0.091
Metolachlor	"	ND	50	0.092
2-methyl-4chlorophenoxyacetic acid	"			
(MCPA)		ND	100	0.12
Metribuzin	"	ND	80	0.12
Monochlorobenzene	"	ND	80	0.58
Paraquat	"	ND	10	1
Pentachlorophenol	"	ND	60	0.15
Phorate	"	ND	2	0.11
Picloram	"	ND	190	0.25
Polychlorinated Biphenyls(PCB)	"	ND	3	0.04
Prometryne	"	ND	1	0.23
Simazine	"	ND	10	0.15
Terbufos	"	ND	1	0.12
Tetrachloroethylene	"	ND	10	0.45
2.3.4.6-Tetrachlorophenol	"	ND	100	0.14
Triallate	"	ND	230	0.10
Trichloroethylene	"	ND	5	0.38
2 4 6-Trichlorophenol	"	ND	5	0.25
Trifluralin	"	ND	45	0.12
Vinyl Chloride	"	ND	1	0.12
				0.17

The following Table summarizes the most recent test results for Schedule 24. Testing is required every 3 years for secure groundwater wells.

2020 ANNUAL DRINKING WATER SYSTEM SUMMARY REPORT Lakeside Water System

1. GENERAL INFORMATION

Oxford County prepares a report summarizing system operation and water quality for every municipal drinking water system annually. The reports detail the latest water quality testing results, water quantity statistics and any adverse conditions that may have occurred for the previous year. They are available for review by the end of February on the Oxford County website at <u>www.oxfordcounty.ca/drinkingwater</u> or by contacting the Public Works Department.

All efforts have been made to ensure the information presented in this report is accurate. If you have any questions or comments concerning the report please contact the County of Oxford at the address and phone number listed below or by email at <u>publicworks@oxfordcounty.ca</u>.

Drinking Water System:	Lakeside Water System
Drinking Water System Number:	220007533
Drinking Water System Owner & Contact Information:	Oxford County Public Works Department Water Services P.O. Box 1614 21 Reeve Street Woodstock, ON N4S 7Y3 Telephone: 519-539-9800 Toll Free: 866-537-7778 Email: publicworks@oxfordcounty.ca
Reporting Period:	January 1, 2020 – December 31, 2020

1.1. System Description

The Lakeside Water System is a Large Municipal Water system as defined by Regulation 170/03 and serves a population of approximately 384. The system consists of one groundwater well with treatment that consists of disinfection with sodium hypochlorite and sodium silicate to sequester iron. Approximately 544 L of sodium hypochlorite and 410 L (580 kg) of sodium silicate were used in the water treatment process. The chemicals are certified to meet standards set by the Standards Council of Canada or American National Standards Institute.

The treatment facility houses high lift pumps, monitoring equipment and a 150 m³ water standpipe to provide storage. A standby generator is available to run the facility in the event of a power failure. The system is maintained by licensed water system operators, who operate treatment and monitoring equipment and collect samples as specified by the Regulation. Alarms automatically notify operators in the event of failure of critical operational requirements.

1.2. Major Expenses

The Lakeside Water System is one of 14 water systems that have revenues and expenses pooled for economy of scale purposes. The systems are combined into the Township Water financial system and in 2020 had forecasted operating and maintenance expenditures of approximately \$2,000,000.

In addition to regular operational and maintenance expenditures Capital Improvement projects included:

- \$350,000 for replacement of distribution water mains in the Township systems
- \$36,000 for improvements to water facilities

Capital Improvement projects for all systems included:

- \$280,000 to develop Countywide SCADA Master Plan for all water systems
- \$50,000 Updated Water Modelling
- \$10,000 Asset Management valuation for all treatment, pumping and storage facilities
- \$75,000 Two mobile generators

2. MICROBIOLOGICAL TESTING

2.1. *E. coli* and Total Coliform

Bacteriological tests for *E. coli* and total coliforms are required weekly from the raw and treated water at the facility and from the distribution system. Extra samples are taken after major repairs or maintenance work. Any *E. coli* or total coliform results above 0 in treated water must be reported to the Ministry of Environment, Conservation and Parks (MECP) and Medical Officer of Health (MOH). Resamples and any other required actions are taken as quickly as possible. The results from the 2020 sampling program are shown on the table below. There were no adverse test results from 160 treated water samples in this reporting period.

	Number of Samples	Range of E. coli Results Min - Max MAC = 0	Range of Total Coliform Results Min - Max MAC = 0
Raw	52	0	0
Treated	55	0	0
Distribution	105	0	0

2.2. Heterotrophic Plate Count (HPC)

HPC analyses are required from the treated and distribution water for small systems. The tests are required weekly for treated water and for 25% of the required distribution system bacteriological samples. HPC should be less than 500 colonies per 1 mL. Results over 500 colonies per 1 mL may indicate a change in water quality but it is not considered an indicator of unsafe water. 2018 results are shown in the table below.

	Number of Samples	Range of HPC Min - Max
Treated	52	0 - 7
Distribution	24	0 - 10

3. CHEMICAL TESTING

The Safe Drinking Water Act requires periodic testing of the water for approximately 60 different chemical parameters. The latest results for all parameters are provided in Appendix A. The sampling frequency varies for different types and sizes of water systems and chemical parameters. If the concentration of a parameter is above half of the Maximum Allowable Concentration (MAC) under the Ontario Drinking Water Quality Standards, an increased testing frequency of once every three months is required by the Regulation. Where concerns regarding a parameter exist, the MECP can also require additional sampling be undertaken.

Information on the health effects and allowable limits of components in drinking water may be found on the MECP web page through the link provided in Appendix A. Additional information on common chemical parameters specific to the Beachville system is provided below.

3.1. Fluoride

Fluoride levels are sampled once every five years and levels above 1.5 mg/L must be reported to the MECP and MOH. Levels under 2.4 mg/L are considered safe for consumption however at levels between 1.5 and 2.4 mg/L fluoride may cause staining or pitting of teeth in children less than 6 years old. Further information on fluoride can be found on the Southwestern Public Health web page at https://www.swpublichealth.ca/en/partners-and-professionals/resources/Health-Care-Providers/Alerts-Advisories-Updates/Advisories/ADV_HIA-Fluoride-20201203.pdf

Oxford County does not add fluoride to the water at any of its drinking water systems however the Lakeside system has naturally occurring fluoride levels of 1.65 mg/L.

3.2. Hardness and Iron

These are aesthetic parameter that may affect the appearance of the water but is not related to health. Well water commonly has high levels of hardness and other minerals from being in contact with underground rock formations. Many households have water softeners to help reduce white calcium deposits, improve the efficiency of soaps and reduce iron levels. This information is included here to help set the water softener at the level recommended by the manufacturer. In Lakeside, chemicals are used to keep iron in suspension.

- Hardness is 189 mg/L (equivalent to 13 grains)
- Iron level was measured at 0.39 mg/L (ppm)

3.3. Additional Testing Required by MECP

None.

4. OPERATIONAL MONITORING

4.1. Chlorine Residual

Free chlorine levels of the treated water are monitored continuously at the discharge point of the Water Treatment Facility. In the distribution system, free chlorine is checked twice weekly at various locations. As a target, free chlorine residual within the distribution system should be above 0.20 mg/L. A free chlorine level lower than 0.05 mg/L must be reported and corrective action taken. There were no reportable incidents in 2020. A summary of the chlorine residual readings is provided in the table below.

4.2. Turbidity

Turbidity of treated water is continuously monitored at the treatment facility, as a change in turbidity can indicate an operational problem. The turbidity of untreated water from the well is checked weekly. Turbidity is measured in nephelometric turbidity units (NTU). Under Regulation 170/03 turbidity in groundwater is not reportable however turbidity should be < 1 NTU at the treatment plant and < 5 NTU in the distribution system. A summary of the monitoring results for 2020 is provided in the table below.

Parameter	Number of Tests or Monitoring Frequency	Range of Results (Min – Max) and Average
Chlorine residual in distribution (mg/L)	367	(0.30 – 1.90) 1.12
Chlorine residual after treatment (mg/L)	Continuous	(0.69 – 3.34) 1.37
Turbidity after treatment (NTU)	Continuous	(0.05 – 2.92) 0.08

5. WATER QUANTITY

Continuous monitoring of flowrates from supply wells into the treatment system and from the facility into the distribution system is required by Regulation 170/03. The Municipal Drinking Water License and Permit to Take

Water issued by the MECP regulate the amount of water that can be utilized over a given time period. A summary of the 2020 flows are provided in the Table below and presented graphically in Appendix B.

Flow Summary	Quantity
Permit to Take Water Limit	270 m³/d
Municipal Drinking Water License Limit	432 m ³ /d
2020 Average Daily Flow	43 m³/d
2020 Maximum Daily Flow	104 m ³
2020 Average Monthly Flow	1,299 m ³
2020 Total Amount of Water Supplied	15,592 m ³

A review of the available supply capacity and the anticipated growth forecasted for the community indicates that the system has sufficient capacity over the 20 year planning horizon.

6. NON-COMPLIANCE FINDINGS AND ADVERSE RESULTS

This section documents any known incidents of non-compliance or adverse results and the associated correction actions taken to resolve the issue. Non-compliance issues are typically identified by either the Operating Authority or the MECP Drinking Water Inspectors. The issues and associated required actions are documented by the Inspectors in the system's Annual Inspection Report. All non-compliance issues are investigated, corrective actions taken and documented using the County's Drinking Water Quality Management System (DWQMS) procedures.

6.1. Non-Compliance Findings

The annual MECP inspection took place in July 2020. There were no non-compliance findings and the 2020 Inspection Report rating was 100%.

6.2. Adverse Results

There were no adverse or reportable occurrences in 2020. Any adverse results from bacteriological, chemical samples or observations of operational conditions that indicate adverse water quality are reported as required and corrective actions taken.

APPENDIX A: SUMMARY OF CHEMICAL RESULTS

UNDERSTANDING CHEMICAL TEST RESULTS

The following tables summarize the laboratory results of the chemical testing Oxford County is required to complete. Different types of parameters are required to be tested for at different frequencies as noted below. Explanations on the health impacts of these parameters can be found in the MECP document <u>https://cvc.ca/wp-content/uploads/2011/03/std01_079707.pdf</u> PIBS4449e01 titled "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines".

Results are shown as concentrations with units of either milligrams per litre (mg/L) or micrograms per litre (ug/L). 1 mg/L is equal to 1000 ug/L. The Maximum Acceptable Concentration (MAC) is the highest amount of a parameter that is acceptable in Municipal drinking water and can be found in the MECP Drinking Water Standards. The Method Detection Limit (MDL) is the lowest amount to which the laboratory can confidently measure. A result of "ND" stands for "Not Detected" and means that the concentration of the chemical is lower than the laboratory's equipment is capable of measuring.

Nitrate and nitrite samples are required every 3 months in normal operation.

Parameter	Result Range Min – Max (mg/L)	Average Result (mg/L)	MAC (mg/L)	MDL (mg/L)
Nitrite	ND	ND	1.0	0.003
Nitrate	ND – 0.009	0.008	10.0	0.006

Trihalomethane (THM) and total Haloacetic Acids (HAA) are by-products of the disinfection process. The samples are required every 3 months from the distribution system.

Parameter	Annual Average	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Trihalomethane (THM)	2020	15	100	0.37
Haloacetic Acids (HAA)	2020	ND	80	5.3

The following Table summarizes the most recent test results for Sodium and Fluoride. Testing and reporting any adverse results is required every 5 years.

Parameter	Sample Date	Result Value (mg/L)	MAC (mg/L)	MDL (mg/L)
Sodium	Aug 06/19	12.1	20.0*	0.01
Fluoride	"	1.65	1.5**	0.06

*Sodium levels between 20 – 200 mg/L must be reported every 5 years.

**Natural levels of fluoride between 1.5 – 2.4 mg/L must be reported every 5 years.

The following Table summarizes the most recent results for the Lead Testing Program. Lead samples are taken every 3 years. Levels of alkalinity and pH are monitored twice per year in the distribution system to ensure water quality is consistent and does not facilitate leaching of lead into the water.

Parameter	Result Range (Min - Max)	Number of Samples	Acceptable Level
Distribution Alkalinity	200 - 208	2	30 – 500mg/L
Distribution pH	7.8 – 8.1	2	6.5 – 8.5
Distribution Lead 2019	0.08	1	10 ug/L MAC

The following Table summarizes the most recent test results for Schedule 23. Testing is required every 3 years for secure groundwater wells.

Parameter	Sample Date	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Antimony	May 21/19	ND	6	0.09
Arsenic	"	0.5	10	0.2
Barium	"	351	1000	0.01
Boron	"	20	5000	2
Cadmium	"	ND	5	0.003
Chromium	"	0.14	50	0.03
Mercury	"	ND	1	0.02
Selenium	"	ND	5	0.04
Uranium	"	0.20	20	0.002

The following Table summarizes the most recent test results for Schedule 24. Testing is required every 3 years for secure groundwater wells.

Parameter	Sample Date	Result Value	MAC (ug/L)	MDL (ug/L)
Alachlor	lune //18		5	0.01
			5	0.01
Azinphos-methyl	"	ND	20	0.02
Ponzono	"	ND	20	0.00
Benze(a)pyrana	"		1	0.32
Bromovurnil	"		0.01	0.004
BioliloxyIII	"		5	0.33
Calbalyi	"		90	0.05
Calbolulan Carbon Tatrashlarida	"		90	0.01
	"		2	0.16
Dispiner	"	ND	90	0.02
Diazinon	"	ND	20	0.02
Dicamba	"	ND	120	0.20
1,2-Dichlorobenzene	"	ND	200	0.50
1,4-Dichlorobenzene	"	ND	5	0.21
1,2-Dichloroethane	"	ND	5	0.43
1,1-Dichloroethylene(Vinylidene chloride)	"	ND	14	0.41
Dichloromethane	"	ND	50	0.34
2-4 Dichlorophenol	"	ND	900	0.15
2,4-Dichlorophenoxy acetic acid (2,4-D)	"	ND	100	0.19
Diclotop-methyl	"	ND	9	0.40
Dimethoate	"	ND	20	0.03
Diquat		ND	70	1
Diuron		ND	150	0.03
Glyphosate		ND	280	6
Malathion		ND	190	0.02
Metolachlor		ND	50	0.01
2-methyl-4chlorophenoxyacetic acid	"	ND	100	0.12
(MCPA)				
Metribuzin		ND	80	0.02
Monochlorobenzene		ND	80	0.3
Paraquat		ND	10	1
Pentachlorophenol		ND	60	0.15
Phorate		ND	2	0.01
Picloram		ND	190	1
Polychlorinated Biphenyls(PCB)	11	ND	3	0.04
Prometryne	11	ND	1	0.03
Simazine	"	ND	10	0.01
Terbufos	"	ND	1	0.01
Tetrachloroethylene	"	ND	10	0.35
2,3,4,6-Tetrachlorophenol	"	ND	100	0.2
Triallate	"	ND	230	0.01
Trichloroethylene	"	ND	5	0.44
2,4,6-Trichlorophenol	"	ND	5	0.25
Trifluralin	"	ND	45	0.02
Vinyl Chloride	"	ND	1	0.17

APPENDIX B: WATER QUANTITY SUMMARY

2020 ANNUAL DRINKING WATER SYSTEM SUMMARY REPORT Mount Elgin Water System

1. GENERAL INFORMATION

Oxford County prepares a report summarizing system operation and water quality for every municipal drinking water system annually. The reports detail the latest water quality testing results, water quantity statistics and any adverse conditions that may have occurred for the previous year. They are available for review by the end of February on the Oxford County website at <u>www.oxfordcounty.ca/drinkingwater</u> or by contacting the Public Works Department.

All efforts have been made to ensure the information presented in this report is accurate. If you have any questions or comments concerning the report please contact the County of Oxford at the address and phone number listed below or by email at <u>publicworks@oxfordcounty.ca</u>.

Drinking Water System:	Mount Elgin Water System
Drinking Water System Number:	220000629
Drinking Water System Owner & Contact Information:	Oxford County Public Works Department Water Services P.O. Box 1614 21 Reeve Street Woodstock, ON N4S 7Y3 Telephone: 519-539-9800 Toll Free: 866-537-7778 Email: publicworks@oxfordcounty.ca
Reporting Period:	January 1, 2020 – December 31, 2020

1.1. System Description

The Mount Elgin Water System is a Large Municipal Water system as defined by Regulation 170/03 and serves a population of approximately 603. The system consists of one groundwater well and a treatment facility. The water is treated with sodium hypochlorite (liquid chlorine) for disinfection and in 2020 approximately 1,924 litres of the chemical was used in the water treatment process. The chemical is certified to meet standards set by the Standards Council of Canada or American National Standards Institute.

The treatment facility houses pumps, monitoring equipment, and a 380 m³ underground reservoir. A standby generator is available to run the facility in the event of a power failure. The system is maintained by licensed water system operators, who operate treatment and monitoring equipment and collect samples as specified by the Regulation. Alarms automatically notify operators in the event of a failure of critical operational requirements.

1.2. Major Expenses

The Mount Elgin Water System is one of 14 water systems that have revenues and expenses pooled for economy of scale purposes. The systems are combined into the Township Water financial system and in 2020 had forecasted operating and maintenance expenditures of approximately \$2,000,000.

In addition to regular operations and maintenance for all water systems, capital improvement projects included:

- \$350,000 for replacement of distribution water mains in the Township systems
- \$36,000 for improvements to water facilities
- \$170,000 for Groundwater Model update for Beachville, Embro, Innerkip, Mt Elgin & Thamesford

• \$550,000 for construction of the Graydon well facility & piping

Capital Improvement projects for all systems included:

- \$280,000 to develop Countywide SCADA Master Plan for all water systems
- \$50,000 Updated Water Modelling
- \$10,000 Asset Management valuation for all treatment, pumping and storage facilities
- \$75,000 Two mobile generators

2. MICROBIOLOGICAL TESTING

2.1. *E. coli* and Total Coliform

Bacteriological tests for *E. coli* and total coliforms are required weekly from the raw and treated water at the facility and from the distribution system. Extra samples are taken after major repairs or maintenance work. Any *E. coli* or total coliform results above 0 in treated water must be reported to the Ministry of the Environment, Conservation and Parks (MECP) and Medical Officer of Health (MOH). Resamples and any other required actions are taken as quickly as possible. The results from the 2020 sampling program are shown on the table below. There were no adverse test results from 156 treated water samples in this reporting period.

	Number of Samples	Range of E. coli Results Min - Max MAC = 0	Range of Total Coliform Results Min - Max MAC = 0
Raw	52	0 - 0	0 - 1
Treated	52	0 - 0	0 - 0
Distribution	104	0 - 0	0 - 0

2.2. Heterotrophic Plate Count (HPC)

HPC analyses are required from the treated and distribution water. The tests are required weekly for treated water and for 25% of the required distribution system bacteriological samples. The HPC should be less than 500 colonies per 1 mL. Results over 500 colonies per 1 mL may indicate a change in water quality but it is not considered an indicator of unsafe water. The 2020 results are shown in the table below.

	Number of Samples	Range of HPC Min - Max
Treated	52	0 - 2
Distribution	24	0 - 15

3. CHEMICAL TESTING

The Safe Drinking Water Act requires periodic testing of the water for approximately 60 different chemical parameters. The latest results for all parameters are provided in Appendix A. The sampling frequency varies for different types and sizes of water systems and chemical parameters. If the concentration of a parameter is above half of the Maximum Allowable Concentration (MAC) under the Ontario Drinking Water Quality Standards, an increased testing frequency of once every three months is required by the Regulation. Where concerns regarding a parameter exist, the MECP can also require additional sampling be undertaken.

Information on the health effects and allowable limits of components in drinking water may be found on the MECP web page through the link provided in Appendix A. Additional information on common chemical parameters specific to the Mount Elgin system is provided below.

3.1. Hardness

This is an aesthetic parameter that may affect the appearance of the water but is not related to health. Well water commonly has high levels of hardness and other minerals from being in contact with underground rock formations. Many households have water softeners to help reduce white calcium deposits and improve the efficiency of soaps. This information is included here to help set the water softener at the level recommended by the manufacturer. The Hardness in the Mount Elgin System is 233 mg/L (equivalent to 17 grains).

3.2. Sodium

Sodium levels in drinking water are tested once every five years. The aesthetic objective is 200 mg/L meaning at levels less than this, sodium will not impair the taste of the water.

When sodium levels are above 20 mg/L the MECP and MOH are notified. Southwestern Public Health Unit maintains an information page on sodium in drinking water at https://www.swpublichealth.ca/en/partners-and-professionals/resources/Health-Care-Providers/Alerts-Advisories-Updates/Advisories/ADV_HIA-Sodium-20201203.pdf in order to help people on sodium restricted diets control their sodium intake. The sodium level in the Mount Elgin water system is 21.3 mg/L.

3.3. Additional Testing Required by MECP

None.

4. OPERATIONAL MONITORING

4.1. Chlorine Residual

Free chlorine levels of the treated water are monitored continuously at the discharge point of the Water Treatment Facility. In the distribution system, free chlorine is checked twice weekly at various locations. As a target, free chlorine residual within the distribution system should be above 0.20 mg/L. A free chlorine level lower than 0.05 mg/L must be reported and corrective action taken. There were no reportable incidents in 2020. A summary of the chlorine residual readings is provided in the table below.

4.2. Turbidity

Turbidity of treated water is continuously monitored at the treatment facility, as a change in turbidity can indicate an operational problem. The turbidity of untreated water from the well is checked weekly. Turbidity is measured in nephelometric turbidity units (NTU). Under Regulation 170/03 turbidity in groundwater is not reportable however turbidity should be < 1 NTU at the treatment plant and < 5 NTU in the distribution system. A summary of the monitoring results for 2020 is provided in the table below.

Parameter	Number of Tests or Monitoring Frequency	Range of Results (Min – Max) and Average
Chlorine residual in distribution (mg/L)	367	(0.67 – 1.64) 1.18
Chlorine residual after treatment (mg/L)	Continuous	(0.50 – 2.60) 1.16
Turbidity after treatment (NTU)	Continuous	(0.07 – 3.95) 0.13

5. WATER QUANTITY

Continuous monitoring of flow rates from supply wells into the treatment system and from the facility into the distribution system is required by Regulation 170/03. The Municipal Drinking Water License and Permit to Take Water issued by the MECP regulate the amount of water that can be utilized over a given time period. A summary of the 2020 flows are provided in the Table below and presented graphically in Appendix B.

Flow Summary	Quantity
Permit to Take Water Limit	328 m³/d
Municipal Drinking Water License Limit	328 m³/d
2020 Average Daily Flow	126 m³/d
2020 Maximum Daily Flow	303 m³/d
2020 Average Monthly Flow	3,859 m ³
2020 Total Amount of Water Supplied	46,309 m ³

To accommodate future growth, construction of a new treatment facility started in 2020 and is anticipated to be operational by mid-2021. When this facility is operational there will be sufficient supply capacity to meet the community's long term growth needs.

6. NON-COMPLIANCE FINDINGS AND ADVERSE RESULTS

This section documents any known incidents of non-compliance or adverse results and the associated correction actions taken to resolve the issue. Non-compliance issues are typically identified by either the Operating Authority or the MECP Drinking Water Inspectors. The issues and associated required actions are documented by the Inspectors in the system's Annual Inspection Report. All non-compliance issues are investigated, corrective actions taken and documented using the County's Drinking Water Quality Management System (DWQMS) procedures.

6.1. Non-Compliance Findings

The annual MECP inspection took place in July 2020. There was one non-compliance finding and the 2020 Inspection Report rating was 95%. This was related to disinfection procedures during reservoir cleaning in February 2020. The reservoir was chlorinated to the appropriate level however additional chlorine was needed to maintain the stipulated chlorine residual during the 24 hour waiting period. According to the MECP, the waiting period should have restarted after the residual was topped up thus the AWWA Standard C652 for Disinfection of Water-Storage facilities was not properly followed. The bacteriological samples taken to verify disinfection were adequate.

6.2. Adverse Results

There were no adverse or reportable occurrences in 2020. Any adverse results from bacteriological, chemical samples or observations of operational conditions that indicate adverse water quality are reported as required and corrective actions are taken.

APPENDIX A: SUMMARY OF CHEMICAL RESULTS

UNDERSTANDING CHEMICAL TEST RESULTS

The following tables summarize the laboratory results of the chemical testing Oxford County is required to complete. Different types of parameters are required to be tested for at different frequencies as noted below. Explanations on the health impacts of these parameters can be found in the MECP document <u>https://cvc.ca/wp-content/uploads/2011/03/std01_079707.pdf</u> PIBS 4449e01 titled "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines".

Results are shown as concentrations with units of either milligrams per litre (mg/L) or micrograms per litre (ug/L). 1 mg/L is equal to 1000 ug/L. The Maximum Acceptable Concentration (MAC) is the highest amount of a parameter that is acceptable in Municipal drinking water and can be found in the MECP Drinking Water Standards. The Method Detection Limit (MDL) is the lowest amount to which the laboratory can confidently measure. A result of "ND" stands for "Not Detected" and means that the concentration of the chemical is lower than the laboratory's equipment is capable of measuring.

Nitrate and nitrate samples are required every 3 months in normal operation.

Parameter	Mi	Result Rai in – Max (I	nge mg/L)	Average Result (mg/	/L)	MAC (mg/L)	MDL (mg/L)
Nitrite		ND		ND		1.0	0.003
Nitrate	(0.012 – 0.0)20	0.016		10.0	0.006

Trihalomethane (THM) and total Haloacetic Acids (HAA) are by-products of the disinfection process. The samples are required every 3 months from the distribution system.

Parameter	Annual Average	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Trihalomethane (THM)	2020	10.4	100	0.37
Haloacetic Acids (HAA)	2020	ND	80	5.3

The following Table summarizes the most recent test results for Sodium and Fluoride. Testing and reporting any adverse results is required every 5 years.

Parameter	Sample Date	Result Value (mg/L)	MAC (mg/L)	MDL (mg/L)
Sodium	May 28, 2019	21.3	20.0*	0.01
Fluoride	"	1.39	1.5**	0.06

*Sodium levels between 20 – 200 mg/L must be reported every 5 years.

**Natural levels of fluoride between 1.5 – 2.4 mg/L must be reported every 5 years.

The following Table summarizes the most recent results for the Lead Testing Program. Lead samples are taken every 3 years. Levels of alkalinity and pH are monitored twice per year in the distribution system to ensure water quality is consistent and does not facilitate leaching of lead into the water.

Parameter	Result Range (Min – Max)	Number of Samples	Acceptable Level
Distribution Alkalinity	222 – 228	2	30 – 500mg/L
Distribution pH	7.8 – 7.9	2	6.5 - 8.5
Distribution Lead 2018	0.13 – 0.15	2	10 ug/L MAC

The following Table summarizes the most recent test results for Schedule 23. Testing is required every 3 years for secure groundwater wells.

Parameter	Sample Date	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Antimony	Feb 24, 2020	ND	6	0.02
Arsenic	"	ND	10	0.2
Barium	"	142	1000	0.01
Boron	"	80	5000	2
Cadmium	"	0.003	5	0.003
Chromium	"	0.65	50	0.08
Mercury	"	ND	1	0.01
Selenium	"	ND	50	0.04
Uranium	"	0.011	20	0.002

The following Table summarizes the most recent test results for the Organic parameters in Schedule 24. Testing is required every 3 years for secure groundwater wells.

Parameter	Sample Date	Result Value	MAC (ug/L)	MDL (ug/L)
Alachlor	Feb 24 2020		5	0.02
Atrazine + N-dealkylatedmetobolites	"	ND	5	0.01
Azinphos-methyl	"	ND	20	0.01
Benzene	"	ND	1	0.32
Benzo(a)pyrene	"	ND	0.01	0.004
Bromoxynil	"	ND	5	0.33
Carbary	"	ND	90	0.05
Carbofuran	"	ND	90	0.00
Carbon Tetrachloride	"	ND	2	0.01
Chlorpyrifos	"	ND	90	0.10
Chlorpyride	"	ND	90	0.02
Diazinon	"	ND	20	0.02
Dicamba	"	ND	120	0.20
1 2-Dichlorobenzene	"	ND	200	0.41
1.4-Dichlorobenzene	"	ND	5	0.36
1.2-Dichloroethane	"	ND	5	0.35
1.1-Dichloroethylene (vinylidene chloride)	"	ND	14	0.33
Dichloromethane	"	ND	50	0.35
2-4 Dichlorophenol	"	ND	900	0.15
2,4-Dichlorophenoxy acetic acid (2,4-D)	"	ND	100	0.19
Diclofop-methyl	"	ND	9	0.40
Dimethoate	66	ND	20	0.03
Diquat	"	ND	70	1
Diuron	"	ND	150	0.03
Glyphosate	"	ND	280	1
Malathion	"	ND	190	0.02
2-methyl-4chlorophenoxyacetic acid (MCPA)	"	ND	100	0.12
Metolachlor	"	ND	50	0.01
Metribuzin	66	ND	80	0.02
Monochlorobenzene	"	ND	80	0.30
Paraquat	"	ND	10	1
Pentachlorophenol	"	ND	60	0.15
Phorate	"	ND	2	0.01
Picloram	"	ND	190	1
Polychlorinated Biphenyls(PCB)	"	ND	3	0.04
Prometryne	"	ND	1	0.03
Simazine	"	ND	10	0.01
Terbufos	"	ND	1	0.01
Tetrachloroethylene	"	ND	10	0.35
2,3,4,6-Tetrachlorophenol	"	ND	100	0.14
Triallate	"	ND	230	0.01
Trichloroethylene	"	ND	5	0.43
2,4,6-Trichlorophenol	"	ND	5	0.25
Trifluralin	"	ND	45	0.02
Vinyl Chloride	"	ND	1	0.17

APPENDIX B: 2020 WATER QUANTITY SUMMARY

Mount Elgin Water System Capacity 328 m³/day

2020 ANNUAL DRINKING WATER SYSTEM SUMMARY REPORT Oxford South Water System

1. GENERAL INFORMATION

Oxford County prepares a report summarizing system operation and water quality for every municipal drinking water system annually. The reports detail the latest water quality testing results, water quantity statistics and any adverse conditions that may have occurred for the previous year. They are available for review by the end of February on the Oxford County website at <u>www.oxfordcounty.ca/drinkingwater</u> or by contacting the Public Works Department.

All efforts have been made to ensure the information presented in this report is accurate. If you have any questions or comments concerning the report please contact the County of Oxford at the address and phone number listed below or by email at <u>publicworks@oxfordcounty.ca</u>.

Drinking Water System:	Oxford South Water System
Drinking Water System Number:	2200000601
Drinking Water System Owner & Contact Information:	Oxford County Public Works Department Water Services P.O. Box 1614 21 Reeve Street Woodstock, ON N4S 7Y3 Telephone: 519-539-9800 Toll Free: 866-537-7778 Email: publicworks@oxfordcounty.ca
Reporting Period:	January 1, 2020 – December 31, 2020

1.1. System Description

The Oxford South Water System is a Large Municipal Water system as defined by Regulation 170/03 and serves a population of approximately 5,340. Transmission watermains interconnect the communities of Otterville, Springford and Norwich.

The system consists of 7 secure groundwater wells and four treatment facilities as follows:

Treatment Facility	Location	Wells	Treatment
Pitcher Street	Norwich N2		Filtration for iron removal and disinfection with sodium hypochlorite
		CVI	
Main Street	Norwich	N4	Iron sequestering with sodium silicate and disinfection with sodium hypochlorite
Otterville	Otterville	03 04	Disinfection with sodium hypochlorite
Springford	Springford	S4 S5	Disinfection with sodium hypochlorite

The treatment facilities each house high lift pumps, and monitoring and treatment equipment for the supply wells. A 1,818 m³ water tower at Norwich and a 1,440 m³ water tower in Otterville provide storage and maintain pressure in the system.

In 2020, approximately 15,580 L of sodium hypochlorite and 1,640 L (2,320 kg) of sodium silicate was used in the water treatment process. These chemicals are certified to meet standards set by the Standards Council of Canada or American National Standards Institute.

Standby generators are available at Norwich and Otterville to run the facilities in the event of a power failure. The system is maintained by licensed water system operators, who operate treatment and monitoring equipment and collect samples as specified by the Regulation. Alarms automatically notify operators in the event of failure of critical operational requirements.

1.2. Major Expenses

The Oxford South Water System is one of 14 water systems that have revenues and expenses pooled for economy of scale purposes. The systems are combined into the Township Water financial system and in 2020 had forecasted operating and maintenance expenditures of approximately \$2,000,000.

In addition to regular operational and maintenance expenditures Capital Improvement projects for Oxford South included:

- \$350,000 for replacement of distribution water mains in the Township systems
- \$25,000 for consulting for Norwich water tower repair & painting
- \$36,000 for improvements to water facilities

Capital Improvement projects for all systems included:

- \$280,000 to develop Countywide SCADA Master Plan for all water systems
- \$50,000 Updated Water Modelling
- \$10,000 Asset Management valuation for all treatment, pumping and storage facilities
- \$75,000 Two mobile generators

2. MICROBIOLOGICAL TESTING

2.1. E. coli and Total Coliform

Bacteriological tests for *E. coli* and total coliforms are required weekly from the raw and treated water at the facility and from the distribution system. Extra samples are taken after major repairs or maintenance work. Any *E. coli* or total coliform results above 0 in treated water must be reported to the Ministry of Environment, Conservation and Parks (MECP) and Medical Officer of Health (MOH). Resamples and any other required actions are taken as quickly as possible. The results from the 2020 sampling program are shown on the table below. There were no adverse test results from 347 treated water samples in this reporting period.

		Range of E. coli	Range of Total Coliform
	Number of	Results	Results
	Samples	Min - Max	Min - Max
		MAC = 0	MAC = 0
Raw	304	0 - 1	0 - 16
Treated	176	0	0
Distribution	171	0	0

2.2. Heterotrophic Plate Count (HPC)

HPC analyses are required from the treated and distribution water. The tests are required weekly for treated water and for 25% of the required distribution system bacteriological samples. HPC should be less than 500 colonies per 1 mL. Results over 500 colonies per 1 mL may indicate a change in water quality but it is not considered an indicator of unsafe water. 2020 results are shown in the table below.

	Number of Samples	Range of HPC Min - Max
Treated	171	0 - 10
Distribution	47	0 - 190

3. CHEMICAL TESTING

The Safe Drinking Water Act requires periodic testing of the water for approximately 60 different chemical parameters. The latest results for all parameters are provided in Appendix A. The sampling frequency varies for different types and sizes of water systems and chemical parameters. If the concentration of a parameter is above half of the Maximum Allowable Concentration (MAC) under the Ontario Drinking Water Quality Standards, an increased testing frequency of once every three months is required by the Regulation. Where concerns regarding a parameter exist, the MECP can also require additional sampling be undertaken.

Information on the health effects and allowable limits of components in drinking water may be found on the MECP web page through the link provided in Appendix A. Additional information on common chemical parameters specific to the Oxford South system is provided below.

3.1. Sodium

Sodium levels in drinking water are tested once every five years. The aesthetic objective is 200 mg/L meaning at levels less than this, sodium will not impair the taste of water.

When sodium levels are above 20 mg/L the MECP and Medical Officer of Health (MOH) are notified. Southwest Public Health maintain an information page on sodium in drinking water at https://www.swpublichealth.ca/en/partners-and-professionals/resources/Health-Care-Providers/Alerts-Advisories-Updates/Advisories/ADV_HIA-Sodium-20201203.pdf in order to help people on sodium restricted diets control their sodium intake. The sodium levels in the Oxford South system range from 23.2 to 48.4 mg/L, depending on which wells are in use.

3.2. Fluoride

Fluoride levels are sampled once every five years and levels above 1.5 mg/L must be reported to the MECP and MOH. Levels under 2.4 mg/L are considered safe for consumption, however at levels between 1.5 and 2.4 mg/L of fluoride may cause staining or pitting of teeth in children less than 6 years old. Further information on fluoride can be found on the Southwest Public Health web page at <u>https://www.swpublichealth.ca/en/partners-and-professionals/resources/Health-Care-Providers/Alerts-Advisories-Updates/Advisories/ADV_HIA-Fluoride-20201203.pdf</u>

Oxford County does not add fluoride to the water at any of its drinking water systems, however the Springford wells have naturally occurring fluoride levels. The fluoride levels in the Springford wells are 1.68 mg/L. All the other wells in the system have fluoride levels below the reportable levels.

3.3. Hardness, Iron and Manganese

These are aesthetic parameters that may affect the appearance of the water but is not related to health. Well water commonly has high levels of hardness and other minerals from being in contact with underground rock formations. Many households have water softeners to help reduce white calcium deposits and improve the efficiency of soaps. This information is included here to help set the water softener at the level recommended by the manufacturer.

The hardness in the Oxford South system depends on the wells being used. The Norwich wells supply a larger proportion of the water to the entire system. The water hardness in the well fields are:

- Springford wells 89 mg/L (equivalent to 6 grains)
- Otterville wells 260 mg/L (18 grains)
- Norwich well 299 mg/L (21 grains)

Iron levels less than 0.30 mg/L (ppm) are not considered to cause aesthetic problems such as discoloured water. The Otterville and Springford wells have less than 0.30 mg/L iron. Iron is removed by filtration at the Norwich Pitcher St. facility, wells N2 and N5. The iron level at the Norwich Main St. facility well N4 is 0.43 mg/L (ppm) and sodium silicate is added to keep the iron in suspension. Manganese is commonly found in conjunction with iron

and also causes discoloured water Manganese levels at the Norwich Main St. facility (W4) and the Springford wells are above a new proposed aesthetic objective of 0.02 mg/L.

3.2. Additional Testing Required by MECP

None.

4. OPERATIONAL MONITORING

4.1. Chlorine Residual

Free chlorine levels of the treated water are monitored continuously at the discharge point of the Water Treatment Facility. In the distribution system, free chlorine is checked twice weekly at various locations. As a target, free chlorine residual within the distribution system should be above 0.20 mg/L. A free chlorine level lower than 0.05 mg/L must be reported and corrective action taken. There were no reportable incidents in 2020. A summary of the chlorine residual readings is provided in the table below.

4.2. Turbidity

Turbidity of treated water is continuously monitored at the treatment facility, as a change in turbidity can indicate an operational problem. The turbidity of untreated water from each well is checked weekly. Turbidity is measured in nephelometric turbidity units (NTU). Under Regulation 170/03 turbidity in groundwater is not reportable however turbidity should be < 1 NTU at the treatment plant and < 5 NTU in the distribution system. A summary of the monitoring results for 2020 is provided in the table below.

	Number of Tests	Range of Results
	or Monitoring Frequency	(Min – Max) and Average
Chlorine residual in distribution (mg/L)	Continuous	(0.30 – 2.35) 1.12
Norwich Main St. E. WTF		
Chlorine Residual (mg/L)	Continuous	(0.23 – 2.85) 1.19
Turbidity (NTU)	"	(0.04 – 2.82) 0.15
Norwich Pitcher St. WTF		
Chlorine Residual (mg/L)	Continuous	(0.91 – 2.41) 1.36
Turbidity (NTU)	"	(0.02 – 2.42) 0.07
Otterville WTF		
Chlorine (mg/L)	Continuous	(0.21 – 3.34) 1.18
Turbidity (NTU)	"	(0.01-3.34) 0.19
Springford WTF		
Chlorine (mg/L)	Continuous	(0.21 - 3.36 1.07
Turbidity (NTU)	"	(0.01 - 3.38) 0.08

5. WATER QUANTITY

Continuous monitoring of flow rates from supply wells into the treatment system and from the facility into the distribution system is required by Regulation 170/03. The Municipal Drinking Water License and Permit to Take Water issued by the MECP regulate the amount of water that can be utilized over a given time period. A summary of the 2020 flows are provided in the Table below and presented graphically in Appendix B.

Flow Summary	Quantity
Permit to Take Water Limit	6,054 m³/d
Municipal Drinking Water License Limit	6,054 m³/d
2020 Average Daily Flow	1,203 m³/d
2020 Maximum Daily Flow	2,470 m³/d
2020 Average Monthly Flow	36,716 m ³
2020 Total Amount of Water Supplied	440,591 m ³

A review of the available supply capacity and the anticipated growth forecasted for the community indicates that the system has sufficient capacity over the 20 year planning horizon.

6. NON-COMPLIANCE FINDINGS AND ADVERSE RESULTS

This section documents any known incidents of non-compliance or adverse results and the associated correction actions taken to resolve the issue. Non-compliance issues are typically identified by either the Operating Authority or the MECP Drinking Water Inspectors. The issues and associated required actions are documented by the Inspectors in the system's Annual Inspection Report. All non-compliance issues are investigated, corrective actions taken and documented using the County's Drinking Water Quality Management System (DWQMS) procedures.

6.1. Non-Compliance Findings

The annual MECP inspection took place in October 2020. There were no non-compliance findings and the 2020 Inspection Report rating was 100%.

6.2. Adverse Results

There were no adverse or reportable occurrences in 2020. Any adverse results from bacteriological, chemical samples or observations of operational conditions that indicate adverse water quality are reported as required and corrective actions taken.

APPENDIX A: SUMMARY OF CHEMICAL RESULTS

UNDERSTANDING CHEMICAL TEST RESULTS

The following tables summarize the laboratory results of the chemical testing Oxford County is required to complete. Different types of parameters are required to be tested for at different frequencies as noted below. Explanations on the health impacts of these parameters can be found in the MECP document at https://cvc.ca/wp-content/uploads/2011/03/std01_079707.pdf PSIB 4449e01 titled "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines".

Results are shown as concentrations with units of either milligrams per litre (mg/L) or micrograms per litre (ug/L). 1 mg/L is equal to 1000 ug/L. The Maximum Acceptable Concentration (MAC) is the highest amount of a parameter that is acceptable in Municipal drinking water and can be found in the MECP Drinking Water Standards. The Method Detection Limit (MDL) is the lowest amount to which the laboratory can confidently measure. A result of "ND" stands for "Not Detected" and means that the concentration of the chemical is lower than the laboratory's equipment is capable of measuring.

Parameter & Location	Result Range Min – Max (mg/L)	Average Result (mg/L)	MAC (mg/L)	MDL (mg/L)
Nitrite			1.0	0.003
Norwich Main St. WTF	ND	ND		
Norwich Pitcher St. WTF	ND	ND		
Otterville WTF	ND	ND		
Springford WTF	ND	ND		
Nitrate			10.0	0.006
Norwich Main St. WTF	ND – 0.007	0.006		
Norwich Pitcher St. WTF	ND – 0.02	0.010		
Otterville WTF	7.21 – 8.18	7.76		
Springford WTF	ND – 0.011	0.007		

Nitrate and nitrite samples are required every 3 months in normal operation.

Trihalomethane (THM) and total Haloacetic Acids (HAA) are by-products of the disinfection process. The samples are required every 3 months from the distribution system.

Parameter	Annual Average	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Trihalomethane (THM)	2020	16	100	0.37
Haloacetic Acids (HAA)	2020	ND	80	5.3

The following Table summarizes the most recent test results for Sodium and Fluoride. Testing and reporting any adverse results is required every 5 years.

Parameter & Location	Sample Date	Result Value (mg/L)	MAC (mg/L)	MDL (mg/L)
Sodium			20.0*	0.01
Norwich Main St. WTF	May 27/19	17.9		
Norwich Pitcher St. WTF	Feb 19/19	23.2		
Otterville WTF	May 27/19	34.0		
Springford WTF	April 17/17	51.4		
Fluoride			1.5**	0.06
Norwich Main St. WTF	Aug. 22/16	1.09		
Norwich Pitcher St. WTF	"	0.96		
Otterville WTF	"	0.10		
Springford WTF	April 17/17	1.67		

*Sodium levels between 20 – 200 mg/L must be reported every 5 years.

**Natural levels of fluoride between 1.5 - 2.4 mg/L must be reported every 5 years.

The following Table summarizes the most recent results for the Lead Testing Program. Lead samples are taken every 3 years. Levels of alkalinity and pH are monitored twice per year in the distribution system to ensure water quality is consistent and does not facilitate leaching of lead into the water.

Parameter	Result Range (Min - Max)	Number Sample	of Acceptable Level
Distribution Alkalinity	216 - 238	6	30 – 500mg/L
Distribution pH	7.56 -8.0	6	6.5 – 8.5
Distribution Lead 2018	0.03 - 4.99	6	10 ug/L MAC

The following Table summarizes the most recent test results for Schedules 23. Testing is required every 3 years for secure groundwater wells.

Parameter	Result Value (ug/L) Norwich Pitcher St. Dec. 7/20	Result Value (ug/L) Norwich Main St. Dec. 7/20	MAC (ug/L)	MDL (ug/L)
Antimony	ND	ND	6	0.02
Arsenic	0.8*	1.5	10	0.2
Barium	174	226	1000	0.01
Boron	79	51	5000	2
Cadmium	ND	ND	5	0.003
Chromium	0.62	0.80	50	0.03
Mercury	ND	ND	1	0.01
Selenium	ND	ND	5	1
Uranium	0.088	0.386	20	0.001

Parameter	Result Value (ug/L) Otterville WTF May 27/19	Result Value (ug/L) Springford WTF July 7/20	MAC (ug/L)	MDL (ug/L)
Antimony	ND	ND	6	0.02
Arsenic	0.2	5.8*	10	0.2
Barium	35.0	116	1000	0.01
Boron	17	204	5000	2
Cadmium	0.012	0.003	5	0.003
Chromium	0.29	0.09	50	0.08
Mercury	ND	ND	1	0.01
Selenium	0.36	ND	5	0.04
Uranium	0.552	0.067	20	0.002

*average of 4 samples

The following Tables summarize the most recent test results for Schedule 24. Testing is required every 3 years for secure groundwater wells.

	Result Value	Result Value		
	(ug/L)	(ug/L)	MAC	MDL
Parameter	Norwich Pitcher St	Norwich Main St.	(ug/L)	(ug/L)
	Nov. 20/17	Nov. 20/17		
Alachlor	ND	ND	5	0.02
Atrazine + N-dealkylated	ND	ND	5	0.01
metobolites				
Benzene	ND	ND	1	0.32
Benzo(a)pyrene	ND	ND	0.01	0.004
Bromoxynil	ND	ND	5	0.33
Carbaryl	ND	ND	90	0.01
Carbofuran	ND	ND	90	0.01
Carbon Tetrachloride	ND	ND	2	0.16
Chlorpyrifos	ND	ND	90	0.02
Cyanazine	ND	ND	10	0.03
Diazinon	ND	ND	20	0.02
Dicamba	ND	ND	120	0.20
1,2-Dichlorobenzene	ND	ND	200	0.36

	Result Value	Result Value		
	(ug/L)	(ug/L)	MAC	MDL
Parameter	Norwich Pitcher St	Norwich Main St.	(ug/L)	(ug/L)
	Nov. 20/17	Nov. 20/17		
1,4-Dichlorobenzene	ND	ND	5	0.36
1,2-Dichloroethane	ND	ND	5	0.35
1,1-Dichloroethylene (vinylidene	ND	ND	14	0.33
chloride)				
Dichloromethane	ND	ND	50	0.35
2-4 Dichlorophenol	ND	ND	900	0.15
2,4-Dichlorophenoxy acetic acid	ND		100	0.19
(2,4-D)				
Diclofop-methyl	ND	ND	9	0.40
Dimethoate	ND	ND	20	0.03
Dinoseb				
Diquat	ND	ND	70	1
Diuron	ND	ND	150	0.003
Glyphosate	ND	ND	280	6
Malathion	ND	ND	190	0.02
2-methyl-4chlorophenoxyacetic	ND	ND	100	0.12
acid (MCPA)				
Methoxychlor	ND	ND	900	0.01
Metolachlor	ND	ND	50	0.01
Metribuzin	ND	ND	80	0.02
Monochlorobenzene	ND	ND	80	0.30
Paraquat	ND	ND	10	1
Pentachlorophenol	ND	ND	60	0.15
Phorate	ND	ND	2	0.01
Picloram	ND	ND	190	0.25
Polychlorinated Biphenyls(PCB)	ND	ND	3	0.04
Prometryne	ND	ND	1	0.03
Simazine	ND	ND	10	0.01
Terbufos	ND	ND	1	0.01
Tetrachloroethylene	ND	ND	10	0.44
2,3,4,6-Tetrachlorophenol	ND	ND	100	0.14
Triallate	ND	ND	230	0.01
Trichloroethylene	ND	ND	5	0.44
2,4,6-Trichlorophenol	ND	ND	5	0.25
Trifluralin	ND	ND	45	0.02
Vinyl Chloride	ND	ND	1	0.17

Parameter	Result Value (ug/L) Otterville WTF June 4/18	Result Value (ug/L) Springford WTF July 6/20	MAC (ug/L)	MDL (ug/L)
Alachlor	ND	ND	5	0.02
Atrazine + N-dealkylated metobolites	ND	ND	5	0.01
Azinphos-methyl	ND	ND	20	0.02
Benzene	ND	ND	1	0.32
Benzo(a)pyrene	ND	ND	0.01	0.004
Bromoxynil	ND	ND	5	0.33
Carbaryl	ND	ND	90	0.01
Carbofuran	ND	ND	90	0.01
Carbon Tetrachloride	ND	ND	2	0.16
Chlorpyrifos	ND	ND	90	0.02
Diazinon	ND	ND	20	0.02
Dicamba	ND	ND	120	0.20

	Result Value (ug/L)	Result Value (ug/L)	MAC	
Paramatar	Otterville WTF	Springford WTF	MAC	
Parameter	June 4/18	July 6/20	(<i>ug/L</i>)	(ug/L)
1,2-Dichlorobenzene	ND	ND	200	0.36
1,4-Dichlorobenzene	ND	ND	5	0.36
1,2-Dichloroethane	ND	ND	5	0.35
1,1-Dichloroethylene (vinylidene	ND	ND	14	0.33
chloride)				
Dichloromethane	ND	ND	50	0.35
2-4 Dichlorophenol	ND	ND	900	0.15
2,4-Dichlorophenoxy acetic acid	ND	ND	100	0.19
(2,4-D)				
Diclofop-methyl	ND	ND	9	0.40
Dimethoate	ND	ND	20	0.03
Diquat	ND	ND	70	1
Diuron	ND	ND	150	0.003
Glyphosate	ND	ND	280	6
Malathion	ND	ND	190	0.02
Methoxychlor	ND	ND	900	0.01
2-methyl-4chlorophenoxyacetic acid	NA	ND	100	0.12
(MCPA)				
Metolachlor	ND	ND	50	0.01
Metribuzin	ND	ND	80	0.02
Monochlorobenzene	ND	ND	80	0.30
Paraquat	ND	ND	10	1
Pentachlorophenol	ND	ND	60	0.15
Phorate	ND	ND	2	0.01
Picloram	ND	ND	190	0.25
Polychlorinated Biphenyls(PCB)	ND	ND	3	0.04
Prometryne	ND	ND	1	0.03
Simazine	ND	ND	10	0.01
Terbufos	ND	ND	1	0.01
Tetrachloroethylene	ND	ND	10	0.35
2,3,4,6-Tetrachlorophenol	ND	ND	100	0.14
Triallate	ND	ND	230	0.01
Trichloroethylene	ND	ND	5	0.44
2,4,6-Trichlorophenol	ND	ND	5	0.25
Trifluralin	ND	ND	45	0.02
Vinyl Chloride	ND	ND	1	0.17

APPENDIX B: 2020 WATER QUANTITY SUMMARY

2020 ANNUAL DRINKING WATER SYSTEM SUMMARY REPORT Plattsville Water System

1. GENERAL INFORMATION

Oxford County prepares a report summarizing system operation and water quality for every municipal drinking water system annually. The reports detail the latest water quality testing results, water quantity statistics and any adverse conditions that may have occurred for the previous year. They are available for review by the end of February on the Oxford County website at <u>www.oxfordcounty.ca/drinkingwater</u> or by contacting the Public Works Department.

All efforts have been made to ensure the information presented in this report is accurate. If you have any questions or comments concerning the report please contact the County of Oxford at the address and phone number listed below or by email at <u>publicworks@oxfordcounty.ca</u>.

Drinking Water System:	Plattsville Water System
Drinking Water System Number:	210001291
Drinking Water System Owner & Contact Information:	Oxford County Public Works Department Water Services P.O. Box 1614 21 Reeve Street Woodstock, ON N4S 7Y3 Telephone: 519-539-9800 Toll Free: 866-537-7778 Email: publicworks@oxfordcounty.ca
Reporting Period:	January 1, 2020 – December 31, 2020

1.1. System Description

The Plattsville Water System is a Large Municipal Water system as defined by Regulation 170/03 and serves a population of approximately 1,607. The system consists of 2 well sources which are secure groundwater wells. The water is treated with sodium hypochlorite for disinfection and sodium silicate to sequester iron. In 2020, approximately 4,100 L of sodium hypochlorite and 3,428 L (4,640 kg) of sodium silicate were used in the water treatment process. These chemicals are certified to meet standards set by the Standards Council of Canada or American National Standards Institute.

The treatment facility houses pumps and monitoring equipment. A 1,830 m³ water tower provides storage and maintains pressure in the distribution system. A standby generator is available to run the facility in the event of a power failure. The system is maintained by licensed water system operators, who operate treatment and monitoring equipment and collect samples as specified by the Regulation. Alarms automatically notify operators in the event of failure of critical operational requirements.

1.2. Major Expenses

The Plattsville Water System is one of 14 water systems that have revenues and expenses pooled for economy of scale purposes. The systems are combined into the Township Water financial system and in 2020 had forecasted operating and maintenance expenditures of approximately \$2,000,000.

In addition to regular operational and maintenance expenditures Capital Improvement projects included:

- \$350,000 for replacement of distribution water mains in the Township systems
- \$36,000 for improvements to water facilities

Capital Improvement projects for all systems included:

- \$280,000 to develop Countywide SCADA Master Plan for all water systems
- \$50,000 Updated Water Modelling
- \$10,000 Asset Management valuation for all treatment, pumping and storage facilities
- \$75,000 Two mobile generators

2. MICROBIOLOGICAL TESTING

2.1. E. coli and Total Coliform

Bacteriological tests for *E. coli* and total coliforms are required weekly on the raw and treated water at the facility and in the distribution system. Extra samples are taken after major repairs or maintenance work. Any *E. coli* or total coliform results above 0 in treated water must be reported to the Ministry of Environment, Conservation and Parks (MECP) and Medical Officer of Health (MOH). Resamples and any other required actions are taken as quickly as possible. The results from the 2020 sampling program are shown on the table below. There were no adverse test results from 168 treated water samples in this reporting period.

	Number of Samples	Range of E. coli Results Min - Max MAC = 0	Range of Total Coliform Results Min - Max MAC = 0
Raw	105	0	0
Treated	52	0	0
Distribution	116	0	0

2.2. Heterotrophic Plate Count (HPC)

HPC analyses are required from the treated and distribution water. The tests are required weekly for treated water and for 25% of the required distribution system bacteriological samples. HPC should be less than 500 colonies per 1 mL. Results over 500 colonies per 1 mL may indicate a change in water quality but it is not considered an indicator of unsafe water. 2020 results are shown in the table below.

	Number of Samples	Range of HPC Min - Max
Treated	52	0 - 3
Distribution	36	0 - 15

3. CHEMICAL TESTING

The Safe Drinking Water Act requires periodic testing of the water for approximately 60 different chemical parameters. The latest results for all parameters are provided in Appendix A. The sampling frequency varies for different types and sizes of water systems and chemical parameters. If the concentration of a parameter is above half of the Maximum Allowable Concentration (MAC) under the Ontario Drinking Water Quality Standards, an increased testing frequency of once every three months is required by the Regulation. Where concerns regarding a parameter exist, the MECP can also require additional sampling be undertaken.

Information on the health effects and allowable limits of components in drinking water may be found on the MECP web page through the link provided in Appendix A. Additional information on common chemical parameters specific to the Beachville system is provided below.

3.1. Hardness, Iron and Manganese

These are aesthetic parameters that may affect the appearance of the water but is not related to health. Well water commonly has high levels of hardness and other minerals from being in contact with underground rock formations. Many households have water softeners to help reduce white calcium deposits and improve the

efficiency of soaps and reduce iron levels. This information is included here to help set the water softener at the level recommended by the manufacturer. Levels of iron less than 0.30 mg/L (ppm) are not considered to cause aesthetic problems such as discoloured water. In Plattsville, sodium silicate is added to help keep iron in suspension. Manganese is commonly found in conjunction with iron and also causes discoloured water. Manganese levels in this system are at or above the aesthetic objective of 0.05 mg/L.

- Average hardness is 1,010 mg/L (equivalent to 71 grains)
- Average iron level is measured at 1.0 mg/L
- Manganese level is 0.07 mg/L (ppm)

3.2. Additional Testing Required by MECP

None.

4. OPERATIONAL MONITORING

4.1. Chlorine Residual

Free chlorine levels of the treated water are monitored continuously at the discharge point of the Water Treatment Facility. In the distribution system, free chlorine is checked twice weekly at various locations. As a target, free chlorine residual within the distribution system should be above 0.20 mg/L. A free chlorine level lower than 0.05 mg/L must be reported and corrective action taken. There were no reportable incidents in 2020. A summary of the chlorine residual readings is provided in the table below.

4.2. Turbidity

Turbidity of treated water is continuously monitored at the treatment facility, as a change in turbidity can indicate an operational problem. The turbidity of untreated water from the well is checked weekly. Turbidity is measured in nephelometric turbidity units (NTU). Under Regulation 170/03 turbidity in groundwater is not reportable however turbidity should be < 1 NTU at the treatment plant and < 5 NTU in the distribution system. A summary of the monitoring results for 2020 is provided in the table below.

Parameter	Number of Tests or Monitoring Frequency	Range of Results (Min – Max) and Average
Chlorine residual in distribution (mg/L)	Continuous	(0.41 – 2.55) 1.18
Chlorine residual after treatment (mg/L)	Continuous	(0.47 – 2.09) 1.36
Turbidity after treatment (NTU)	Continuous	(0.05 – 2.52) 0.11

5. WATER QUANTITY

Continuous monitoring of flowrates from supply wells into the treatment system and from the facility into the distribution system is required by Regulation 170/03. The Municipal Drinking Water License and Permit to Take Water issued by the MECP regulate the amount of water that can be utilized over a given time period. A summary of the 2020 flows are provided in the Table below and presented graphically in Appendix B.

Flow Summary	Quantity
Permit to Take Water Limit	4,579 m³/d
Municipal Drinking Water License Limit	2,290 m³/d
2020 Average Daily Flow	408 m³/d
2020 Maximum Daily Flow	1,532m ³ /d
2020 Average Monthly Flow	12,380 m ³
2020 Total Amount of Water Supplied	148,561 m ³

A review of the available supply capacity and the anticipated growth forecasted for the community indicates that the system has sufficient capacity over the 20 year planning horizon. The Plattsville system is currently operated to maximize turnover within the water tower during hot or cold weather in order to minimize temperature change of the water. This operational practice artificially increases the maximum daily flow. A more realistic maximum day is 983 m³/d which averages flow over a three day period to moderate the variance in pumping.

6. NON-COMPLIANCE FINDINGS AND ADVERSE RESULTS

This section documents any known incidents of non-compliance or adverse results and the associated correction actions taken to resolve the issue. Non-compliance issues are typically identified by either the Operating Authority or the MECP Drinking Water Inspectors. The issues and associated required actions are documented by the Inspectors in the system's Annual Inspection Report. All non-compliance issues are investigated, corrective actions taken and documented using the County's Drinking Water Quality Management System (DWQMS) procedures.

6.1. Non-Compliance Findings

The 2020 MECP annual inspection had not taken place at the time this report was prepared. Due to Covid-19 restrictions data review will occur first with the field inspection will take place at a later date. Final inspection results will be presented to County Council in a memo. The 2019 Inspection Report rating was 100%.

6.2. Adverse Results

There were no adverse or reportable occurrences in 2020. Any adverse results from bacteriological, chemical samples or observations of operational conditions that indicate adverse water quality are reported as required and corrective actions are taken.

APPENDIX A: SUMMARY OF CHEMICAL RESULTS

UNDERSTANDING CHEMICAL TEST RESULTS

The following tables summarize the laboratory results of the chemical testing Oxford County is required to complete. Different types of parameters are required to be tested for at different frequencies as noted below. Explanations on the health impacts of these parameters can be found in the MECP document at https://cvc.ca/wp-content/uploads/2011/03/std01_079707.pdf PSIB 4449e01titled "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines".

Results are shown as concentrations with units of either milligrams per litre (mg/L) or micrograms per litre (ug/L). 1 mg/L is equal to 1000 ug/L. The Maximum Acceptable Concentration (MAC) is the highest amount of a parameter that is acceptable in Municipal drinking water and can be found in the MECP Drinking Water Standards. The Method Detection Limit (MDL) is the lowest amount to which the laboratory can confidently measure. A result of "ND" stands for "Not Detected" and means that the concentration of the chemical is lower than the laboratory's equipment is capable of measuring.

Nitrate and nitrate samples are required every 3 months in normal operation.

Parameter	Result Range Min – Max (mg/L)	Average Result (mg/L)	MAC (mg/L)	MDL (mg/L)
Nitrite	ND	ND	1.0	0.003
Nitrate	0.114 – 0.352	0.231	10.0	0.006

Trihalomethane (THM) and total Haloacetic Acids (HAA) are by-products of the disinfection process. The samples are required every 3 months from the distribution system.

Parameter	Annual Average	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Trihalomethane (THM)	2020	14	100	0.37
Haloacetic Acids (HAA)	2020	6.7	80	5.3

The following Table summarizes the most recent test results for Sodium and Fluoride. Testing and reporting any adverse results is required every 5 years.

Parameter	Sample Date	Result Value (mg/L)	MAC (mg/L)	MDL (mg/L)
Sodium	Aug 22/16	16.9	20.0*	0.01
Fluoride	"	1.10	1.5**	0.06

*Sodium levels between 20 – 200 mg/L must be reported every 5 years.

**Natural levels of fluoride between 1.5 – 2.4 mg/L must be reported every 5 years.

The following Table summarizes the most recent results for the Lead Testing Program. Lead samples are taken every 3 years. Levels of alkalinity and pH are monitored twice per year in the distribution system to ensure water quality is consistent and does not facilitate leaching of lead into the water.

Parameter	Result Range (Min - Max)	Number of Samples	Acceptable Level
Distribution Alkalinity	227 - 231	4	30 – 500mg/L
Distribution pH	7.2 - 7.4	4	6.5 – 8.5
Distribution Lead 2018	0.08 - 1.46	4	10 ug/L MAC

The following Table summarizes the most recent test results for Schedule 23. Testing is required every 3 years for secure groundwater wells.

Parameter	Sample Date	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Antimony	May 21/19	011	6	0.09
Arsenic	"	0.4	10	0.2
Barium	"	11.2	1000	0.01
Boron	"	106	5000	2
Cadmium	"	0.033	5	0.003
Chromium	"	0.15	50	0.03
Mercury	"	ND	1	0.01
Selenium	"	0.08	5	0.04
Uranium	"	0.519	20	0.002

Result Sample Parameter Value MAC (ug/L) MDL (ug/L) Date (ug/L)Alachlor June 4/18 ND 5 0.11 Atrazine + N-dealkylatedmetobolites 5 ND 0.12 Azinphos-methyl ND 20 0.21 " Benzene ND 1 0.37 " Benzo(a)pyrene ND 0.01 0.004 " Bromoxynil ND 5 0.33 " Carbaryl ND 90 0.16 " 90 0.37 Carbofuran ND " Carbon Tetrachloride ND 2 0.41 " 0.18 Chlorpyrifos ND 90 " Diazinon ND 20 0.081 " Dicamba ND 120 0.20 " ND 1,2-Dichlorobenzene 200 0.50 " 1,4-Dichlorobenzene ND 5 0.21 " 5 0.43 1,2-Dichloroethane ND " 1,1-Dichloroethylene(vinylidene chloride) ND 14 0.41 " Dichloromethane ND 50 0.34 2-4 Dichlorophenol " ND 900 0.15 2,4-Dichlorophenoxy acetic acid (2,4-D) " ND 100 0.19 " Diclofop-methyl ND 9 0.40 " 20 0.12 Dimethoate ND " Diquat ND 70 1 " ND 150 0.87 Diuron " ND Glyphosate 280 6 " Malathion ND 190 0.091 " ND 50 0.092 Metolachlor " 2-methyl-4chlorophenoxyacetic acid (MCPA) ND 100 0.12 " 0.12 Metribuzin ND 80 " ND 0.58 Monochlorobenzene 80 " ND 10 1 Paraquat Pentachlorophenol " ND 60 0.15 " Phorate ND 2 0.11 Picloram " ND 190 0.25 " Polychlorinated Biphenyls(PCB) ND 0.04 3 " ND 0.23 Prometryne 1 " Simazine ND 10 0.15 " Terbufos ND 1 0.12 " Tetrachloroethylene ND 10 0.45 " 2,3,4,6-Tetrachlorophenol 100 0.14 ND " ND 230 0.10 Triallate

"

"

"

"

ND

ND

ND

ND

5

5

45

1

0.38

0.25

0.12

0.17

Trichloroethylene

Trifluralin

Vinyl Chloride

2,4,6-Trichlorophenol

The following Table summarizes the most recent test results for Schedule24. Testing is required every 3 years for secure groundwater wells.

APPENDIX B: 2020 WATER QUANTITY SUMMARY

** Operational practices artificially elevate the maximum day flows and they are recalculated to a 3 day maximum average day flow. See Section 5 of Annual Report

ANNUAL DRINKING WATER SYSTEM SUMMARY REPORT Tavistock Water System

1. GENERAL INFORMATION

Oxford County prepares a report summarizing system operation and water quality for every municipal drinking water system annually. The reports detail the latest water quality testing results, water quantity statistics and any adverse conditions that may have occurred for the previous year. They are available for review by the end of February on the Oxford County website at <u>www.oxfordcounty.ca/drinkingwater</u> or by contacting the Public Works Department.

All efforts have been made to ensure the information presented in this report is accurate. If you have any questions or comments concerning the report please contact the County of Oxford at the address and phone number listed below or by email at <u>publicworks@oxfordcounty.ca</u>.

Drinking Water System:	Tavistock Water System
Drinking Water System Number:	2200000647
Drinking Water System Owner & Contact Information:	Oxford County Public Works Department Water Services P.O. Box 1614 21 Reeve Street Woodstock, ON N4S 7Y3 Telephone: 519-539-9800 Toll Free: 866-537-7778 Email: publicworks@oxfordcounty.ca
Reporting Period:	January 1, 2020 – December 31, 2020

1.1. System Description

The Tavistock Water System is a Large Municipal Water system as defined by Regulation 170/03 and serves a population of approximately 3,008. The system consists of 3 well sources which are secure groundwater wells. The water is treated with sodium hypochlorite for disinfection and sodium silicate to sequester iron. In 2020, approximately 23,370 L of sodium hypochlorite and 13,120 L (18,560 kg) of sodium silicate were used in the water treatment process. These chemicals are certified to meet standards set by the Standards Council of Canada or American National Standards Institute.

The 1,590 m³ water tower provides storage and maintains pressure in the system. The water tower also houses high lift pumps, treatment and monitoring equipment. A standby generator is available to run the facility in the event of a power failure. The system is maintained by licensed water system operators, who operate treatment and monitoring equipment and collect samples as specified by the Regulation. Alarms automatically notify operators in the event of failure of critical operational requirements.

1.2. Major Expenses

The Tavistock Water System is one of 14 water systems that have revenues and expenses pooled for economy of scale purposes. The systems are combined into the Township Water financial system and in 2020 had forecasted operating and maintenance expenditures of approximately \$2,000,000. In addition to regular operational and maintenance expenditures Capital Improvement projects included:

- \$350,000 for replacement of distribution water mains in the Township systems
- \$36,000 for improvements to water facilities
- \$45,000 Class EA for new well 4

Capital Improvement projects for all systems included:

- \$280,000 to develop Countywide SCADA Master Plan for all water systems
- \$50,000 Updated Water Modelling
- \$10,000 Asset Management valuation for all treatment, pumping and storage facilities
- \$75,000 Two mobile generators

2. MICROBIOLOGICAL TESTING

2.1. E. coli and Total Coliform

Bacteriological tests for *E. coli* and total coliforms are required weekly on the raw and treated water at the facility and in the distribution system. Extra samples are taken after major repairs or maintenance work. Any *E. coli* or total coliform results above 0 in treated water must be reported to the Ministry of Environment, Conservation and Parks (MECP) and Medical Officer of Health (MOH). Resamples and any other required actions are taken as quickly as possible. The results from the 2020 sampling program are shown on the table below. There were no adverse test results from 219 treated water samples in this reporting period.

	Number of Samples	Range of E. coli Results Min - Max MAC = 0	Range of Total Coliform Results Min - Max MAC = 0
Raw	156	0	0 - 1
Treated	52	0	0
Distribution	167	0	0

2.2. Heterotrophic Plate Count (HPC)

HPC analyses are required from the treated and distribution water. The tests are required weekly for treated water and for 25% of the required distribution system bacteriological samples. HPC should be less than 500 colonies per 1 mL. Results over 500 colonies per 1 mL may indicate a change in water quality but it is not considered an indicator of unsafe water. 2020 results are shown in the table below.

	Number of Samples	Range of HPC Min - Max
Treated	52	0 - 1
Distribution	36	0 - 29

3. CHEMICAL TESTING

The Safe Drinking Water Act requires periodic testing of the water for approximately 60 different chemical parameters. The latest results for all parameters are provided in Appendix A. The sampling frequency varies for different types and sizes of water systems and chemical parameters. If the concentration of a parameter is above half of the Maximum Allowable Concentration (MAC) under the Ontario Drinking Water Quality Standards, an increased testing frequency of once every three months is required by the Regulation. Where concerns regarding a parameter exist, the MECP can also require additional sampling be undertaken.

Information on the health effects and allowable limits of components in drinking water may be found on the MECP web page through the link provided in Appendix A. Additional information on common chemical parameters specific to the Tavistock system is provided below.

3.1. Hardness, Iron and Manganese

These are aesthetic parameters that may affect the appearance of the water but is not related to health. Well water commonly has high levels of hardness and other minerals from being in contact with underground rock formations. Many households have water softeners to help reduce white calcium deposits and improve the efficiency of soaps and reduce iron levels. This information is included here to help set the water softener at the

level recommended by the manufacturer. Levels of iron less than 0.30 mg/L (ppm) are not considered to cause aesthetic problems such as discoloured water. In Tavistock sodium silicate is added to keep the iron in suspension. Manganese is commonly found in conjunction with iron and also causes discoloured water Manganese levels in this system are above a new proposed aesthetic objective of 0.02 mg/L.

- Hardness is 334 mg/L (equivalent to 23 grains)
- Average iron level is 0.72 mg/L

3.2. Additional Testing Required by MECP

None.

4. OPERATIONAL MONITORING

4.1. Chlorine Residual

Free chlorine levels of the treated water are monitored continuously at the discharge point of the Water Treatment Facility. In the distribution system, free chlorine is checked twice weekly at various locations. As a target, free chlorine residual within the distribution system should be above 0.20 mg/L. A free chlorine level lower than 0.05 mg/L must be reported and corrective action taken. There were no reportable incidents in 2020. A summary of the chlorine residual readings is provided in the table below.

4.2. Turbidity

Turbidity of treated water is continuously monitored at the treatment facility, as a change in turbidity can indicate an operational problem. The turbidity of untreated water from the well is checked weekly. Turbidity is measured in nephelometric turbidity units (NTU). Under Regulation 170/03 turbidity in groundwater is not reportable however turbidity should be < 1 NTU at the treatment plant and < 5 NTU in the distribution system. A summary of the monitoring results for 2020 is provided in the table below.

Parameter	Number of Tests or Monitoring Frequency	Range of Results (Min – Max) and Average
Chlorine residual in distribution (mg/L)	Continuous	(0.33 – 1.81) 1.05
Chlorine residual after treatment (mg/L)	Continuous	(0.33 – 2.08) 1.20
Turbidity after treatment (NTU)	Continuous	(0.02 – 0.26 0.04

5. WATER QUANTITY

Continuous monitoring of flowrates from supply wells into the treatment system and from the facility into the distribution system is required by Regulation 170/03. The Municipal Drinking Water License and Permit to Take Water issued by the MECP regulate the amount of water that can be utilized over a given time period. A summary of the 2020 flows are provided in the Table below and presented graphically in Appendix B.

Flow Summary	Quantity
Permit to Take Water Limit	5,616 m³/d
Municipal Drinking Water License Limit	5,616 m³/d
2020 Average Daily Flow	1,476 m³/d
2020 Maximum Daily Flow	2,711 m ³ /d
2020 Average Monthly Flow	45,030 m ³
2020 Total Amount of Water Supplied	540,363 m ³

A review of the available supply capacity and the anticipated growth forecasted for the community indicates that the system has sufficient capacity over the 20 year planning horizon.

6. NON-COMPLIANCE FINDINGS AND ADVERSE RESULTS

This section documents any known incidents of non-compliance or adverse results and the associated correction actions taken to resolve the issue. Non-compliance issues are typically identified by either the Operating Authority or the MECP Drinking Water Inspectors. The issues and associated required actions are documented by the Inspectors in the system's Annual Inspection Report. All non-compliance issues are investigated,
corrective actions taken and documented using the County's Drinking Water Quality Management System (DWQMS) procedures.

6.1. Non-Compliance Findings

The data review for the 2020 MECP annual inspection took place in January 2020. Due to Covid-19 restrictions the field inspection will take place at a later date. Final inspection results will be presented to County Council in a memo. The 2019 Inspection Report rating was 100%.

6.2. Adverse Results

There were no adverse or reportable occurrences in 2020. Any adverse results from bacteriological, chemical samples or observations of operational conditions that indicate adverse water quality are reported as required and corrective actions taken.

APPENDIX A: SUMMARY OF CHEMICAL RESULTS

UNDERSTANDING CHEMICAL TEST RESULTS

The following tables summarize the laboratory results of the chemical testing Oxford County is required to complete. Different types of parameters are required to be tested for at different frequencies as noted below. Explanations on the health impacts of these parameters can be found can be found in the MECP document at https://cvc.ca/wp-content/uploads/2011/03/std01_079707.pdf PSIB 4449e01 titled "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines".

Results are shown as concentrations with units of either milligrams per litre (mg/L) or micrograms per litre (ug/L). 1 mg/L is equal to 1000 ug/L. The Maximum Acceptable Concentration (MAC) is the highest amount of a parameter that is acceptable in Municipal drinking water and can be found in the MECP Drinking Water Standards. The Method Detection Limit (MDL) is the lowest amount to which the laboratory can confidently measure. A result of "ND" stands for "Not Detected" and means that the concentration of the chemical is lower than the laboratory's equipment is capable of measuring.

Nitrate and nitrate samples are required every 3 months in normal operation.

Parameter	Result Range Min – Max (mg/L)	Average Result (mg/L)	MAC (mg/L)	MDL (mg/L)
Nitrite	ND	ND	1.0	0.003
Nitrate	0.014 – 0.016	0.015	10.0	0.006

Trihalomethane (THM) and total Haloacetic Acids (HAA) are by-products of the disinfection process. The samples are required every 3 months from the distribution system.

Parameter	Annual Average	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Trihalomethane (THM)	2020	18	100	0.37
Haloacetic Acids (HAA)	2020	9.6	80	5.3

The following Table summarizes the most recent test results for Sodium and Fluoride. Testing and reporting any adverse results is required every 5 years.

Parameter	Sample Date	Result Value (mg/L)	MAC (mg/L)	MDL (mg/L)
Sodium	Aug 22/16	16.4	20.0*	0.01
Fluoride	"	0.71	1.5**	0.06

*Sodium levels between 20 – 200 mg/L must be reported every 5 years.

**Natural levels of fluoride between 1.5 - 2.4 mg/L must be reported every 5 years.

The following Table summarizes the most recent results for the Lead Testing Program. Lead samples are taken every 3 years. Levels of alkalinity and pH are monitored twice per year in the distribution system to ensure water quality is consistent and does not facilitate leaching of lead into the water.

Parameter	Result Range (Min - Max)	Number of Samples	Acceptable Level
Distribution Alkalinity	238 - 255	4	30 – 500mg/L
Distribution pH	7.7 - 7.8	4	6.5 – 8.5
Distribution Lead 2018	0.01 - 0.25	4	10 ug/L MAC

The following Table summarizes the most recent test results for Schedule 23. Testing is required every 3 years for secure groundwater wells.

Parameter	Sample Date	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Antimony	May 21/19	ND	6	0.09
Arsenic	"	1.4	10	0.2
Barium	"	266	1000	0.01
Boron	"	37	5000	2
Cadmium	"	ND	5	0.003
Chromium	"	0.13	50	0.03
Mercury	"	ND	1	0.01
Selenium	"	ND	5	0.04
Uranium	"	0.116	20	0.002

 The following Table summarizes the most recent test results for Schedule 24. Testing is required every 3 years for secure groundwater wells.

 Parameter
 Sample Date
 Result Value (ug/L)
 MAC (ug/L)
 MDL (ug/L)

 Alachlor
 Iune 4/18
 ND
 5
 0.11

Alachlor June 4/18 ND 5 0.11 Atrazine + N-dealkylatedmetobolites * ND 1 0.21 Azinphos-methyl * ND 1 0.37 Benzene * ND 1 0.37 Benzo(a)pyrene * ND 0.011 0.004 Bromoxynil * ND 90 0.16 Carboturan * ND 90 0.16 Carboturan * ND 90 0.17 Chlorpyrifos * ND 90 0.18 Dizarion * ND 120 0.001 Dicamba * ND 120 0.20 1,2-Dichlorobenzene * ND 5 0.21 1,2-Dichlorobenzene * ND 5 0.21 1,2-Dichlorobethylene (vinylidene chloride) * ND 50 0.34 2-4-Dichlorophenoxy acetic acid (2,4-D) * ND 90 0.15 2			(49/2)		
Atrazine + N-dealkylatedmetobolites * ND 5 0.12 Azinphos-methyl * ND 20 0.21 Benzene * ND 0.01 0.004 Bernzo(a)pyrene * ND 0.01 0.004 Bernzo(a)pyrene * ND 0.01 0.004 Bernzo(a)pyrene * ND 90 0.16 Carbonyl * ND 90 0.37 Carbon Tetrachloride * ND 90 0.18 Diazinon * ND 120 0.20 1,4-Dichlorobenzene * ND 20 0.081 1,4-Dichlorobenzene * ND 5 0.43 1,4-Dichlorobenzene * ND 5 0.44 1,4-Dichlorophenol * ND 90 0.15 2,4-Dichlorophenoly acetic acid (2,4-D) * ND 90 0.40 Dichorophenoxy acetic acid (2,4-D) * ND 90	Alachlor	June 4/18	ND	5	0.11
Azinphos-methyl * ND 20 0.21 Benzene * ND 1 0.37 Bernzo(a)pyrene * ND 0.01 0.004 Bromoxynil * ND 90 0.16 Carbaryl * ND 90 0.37 Carbon Tetrachloride * ND 90 0.37 Carbon Tetrachloride * ND 90 0.18 Diazinon * ND 20 0.081 Dizamba * ND 20 0.061 1,2-Dichlorobenzene * ND 5 0.21 1,2-Dichlorobethane * ND 5 0.43 1,1-Dichlorophenol * ND 50 0.34 2-4 Dichlorophenol * ND 90 0.15 2.4-Dichlorophenol * ND 100 0.19 Dictorophenol * ND 100 0.12 Diquat *	Atrazine + N-dealkylatedmetobolites	"	ND	5	0.12
Benzene * ND 1 0.37 Benzo(a)pyrene * ND 0.01 0.004 Bromoxynil * ND 5 0.33 Carbaryl * ND 90 0.16 Carbon Tetrachloride * ND 90 0.37 Carbon Tetrachloride * ND 2 0.41 Chlorpyrifos * ND 20 0.081 Dicamba * ND 20 0.081 Dicamba * ND 20 0.20 1,4-Dichlorobenzene * ND 5 0.21 1,2-Dichlorobenzene * ND 5 0.43 1,1-Dichlorobenzene * ND 50 0.34 2-4 Dichlorophenol * ND 900 0.15 2,4-Dichlorophenol * ND 90 0.40 Diredorp-methyl * ND 70 1 Diredorpenenol *	Azinphos-methyl	"	ND	20	0.21
Benzo(a)pyrene * ND 0.01 0.004 Bromoxynil * ND 5 0.33 Carbaryl * ND 90 0.16 Carboruran * ND 90 0.37 Carbon Tetrachloride * ND 90 0.37 Carbon Tetrachloride * ND 90 0.18 Diazinon * ND 20 0.081 Dizarion * ND 20 0.20 1,2-Dichlorobenzene * ND 5 0.21 1,2-Dichlorobetnarene * ND 5 0.43 1,1-Dichlorobetnare * ND 50 0.34 2,4-Dichlorophenoly acetic acid (2,4-D) * ND 90 0.16 2,4-Dichlorophenoxy acetic acid (2,4-D) * ND 90 0.12 Dicofop-methyl * ND 100 0.19 Dicorop-methyl * ND 150 0.87	Benzene	"	ND	1	0.37
Bromoxynil * ND 5 0.33 Carbaryl * ND 90 0.16 Carbon Tetrachloride * ND 90 0.37 Carbon Tetrachloride * ND 2 0.41 Chlorpyrifos * ND 20 0.081 Diazinon * ND 20 0.081 Diazinon * ND 20 0.20 1,2-Dichlorobenzene * ND 5 0.21 1,2-Dichloroethyane * ND 5 0.21 1,2-Dichloroethylene(vinylidene chloride) * ND 14 0.41 Dichlorophenoxy acetic acid (2,4-D) * ND 900 0.15 2,4-Dichlorophenoxy acetic acid (2,4-D) * ND 100 0.19 Diclofop-methyl * ND 70 1 Diuron * ND 70 1 Diuron * ND 150 0.87	Benzo(a)pyrene	"	ND	0.01	0.004
Carbofuran * ND 90 0.16 Carbon Tetrachloride * ND 2 0.41 Chlorpyrifos * ND 90 0.18 Diazinon * ND 90 0.18 Diazinon * ND 120 0.20 1.2-Dichlorobenzene * ND 5 0.41 1.2-Dichlorobenzene * ND 5 0.43 1.1-Dichloroethylene(vinylidene chloride) * ND 14 0.41 Dichlorophenol * ND 900 0.15 2.4-Dichlorophenoxy acetic acid (2,4-D) * ND 100 0.19 Dicklop-methyl * ND 20 0.12 Diguat * ND 100 0.12 Diquat * ND 100 0.12 Diquat * ND 100 0.12 Diquat * ND 100 0.12 Malathion * ND 80	Bromoxynil	"	ND	5	0.33
Carbofuran * ND 90 0.37 Carbon Tetrachloride * ND 2 0.41 Chlorpyrifos * ND 90 0.18 Diazinon * ND 20 0.081 Diazinon * ND 20 0.001 Diazinon * ND 200 0.50 1,2-Dichlorobenzene * ND 5 0.21 1,2-Dichlorobethylene(vinylidene chloride) * ND 14 0.41 Dichloromethylene(vinylidene chloride) * ND 14 0.41 Dichlorophenol * ND 900 0.15 2,4-Dichlorophenoly acetic acid (2,4-D) * ND 100 0.19 Didofop-methyl * ND 100 0.19 10040 Diquat * ND 100 0.19 100 0.12 Diquat * ND 150 0.87 1 Glyphosate *	Carbaryl	"	ND	90	0.16
Carbon Tetrachloride " ND 2 0.41 Chiopyrifos " ND 90 0.18 Diazinon " ND 20 0.081 Dicamba " ND 120 0.20 1,2-Dichlorobenzene " ND 5 0.21 1,4-Dichlorobenzene " ND 5 0.43 1,4-Dichloroethylene(vinylidene chloride) " ND 50 0.43 1,4-Dichlorophenol " ND 50 0.34 2:4 Dichlorophenoxy acetic acid (2,4-D) " ND 900 0.15 2:4-Dichlorophenoxy acetic acid (2,4-D) " ND 9 0.40 Dimethoate " ND 20 0.12 Diguat ND 150 0.87 Diuron " ND 150 0.87 0.991 Metolachlor ND 100 0.12 Diuron " ND 100 0.12 0.12 0.12 <td< td=""><td>Carbofuran</td><td>"</td><td>ND</td><td>90</td><td>0.37</td></td<>	Carbofuran	"	ND	90	0.37
Chlorpyrifos " ND 90 0.18 Diazinon " ND 20 0.081 Dicamba " ND 120 0.20 1,2-Dichlorobenzene " ND 200 0.50 1,2-Dichlorobenzene " ND 5 0.21 1,2-Dichloroethane " ND 5 0.43 1,1-Dichloroethylene(vinylidene chloride) " ND 14 0.41 Dichlorophenol " ND 900 0.15 2,4-Dichlorophenoxy acetic acid (2,4-D) " ND 900 0.15 2,4-Dichlorophenoxy acetic acid (2,4-D) " ND 9 0.40 Dimethoate " ND 100 0.12 Dilotophenoxy acetic acid (2,4-D) " ND 100 0.12 Diduta " ND 100 0.12 0.12 Dilotophenoxy acetic acid (2,4-D) " ND 100 0.12 Diuron " ND 70	Carbon Tetrachloride	"	ND	2	0.41
Diazinon " ND 20 0.081 Dicamba " ND 120 0.20 1,2-Dichlorobenzene " ND 200 0.50 1,4-Dichlorobenzene " ND 5 0.21 1,2-Dichloroethane " ND 5 0.43 1,1-Dichloroethylene(vinylidene chloride) " ND 14 0.41 Dichloroethane " ND 50 0.34 2-4 Dichlorophenol " ND 900 0.15 2,4-Dichlorophenoxy acetic acid (2,4-D) " ND 90 0.40 Dicotop-methyl " ND 90 0.40 Dimethoate " ND 70 1 Diuron " ND 150 0.87 Glyphosate " ND 100 0.12 McCPA) " ND 80 0.58 Paraquat " ND 80 0.58 Paraquat	Chlorpyrifos	"	ND	90	0.18
Dicamba " ND 120 0.20 1,4-Dichlorobenzene " ND 200 0.50 1,4-Dichlorobenzene " ND 5 0.21 1,2-Dichlorobenzene " ND 5 0.43 1,1-Dichlorobenzene " ND 14 0.41 Dichlorobenzene " ND 50 0.34 2-4 Dichlorophenol " ND 900 0.15 2.4-Dichlorophenoxy acetic acid (2,4-D) " ND 100 0.19 Diclofop-methyl " ND 20 0.12 Diquat " ND 70 1 Diuron " ND 150 0.87 Glyphosate " ND 100 0.12 Metribuzin " ND 100 0.12 Metribuzin " ND 80 0.12 Monochlorobenzene " ND 80 0.12 Metribuzin	Diazinon	"	ND	20	0.081
1,2-Dichlorobenzene " ND 200 0.50 1,4-Dichlorobenzene " ND 5 0.21 1,2-Dichloroethane " ND 5 0.43 1,1-Dichloroethylene(vinylidene chloride) " ND 14 0.41 Dichlorophenol " ND 50 0.34 2-4 Dichlorophenoxy acetic acid (2,4-D) " ND 900 0.15 2,4-Dichlorophenoxy acetic acid (2,4-D) " ND 900 0.19 Diclofop-methyl " ND 20 0.12 Diquat " ND 70 1 Diuron " ND 100 0.87 Glyphosate " ND 100 0.12 Metolachlor " ND 100 0.12 Metribuzin " ND 80 0.12 Moncchlorobenzene " ND 80 0.12 Monchlorobenzene " ND 80 0.58	Dicamba	"	ND	120	0.20
1.4-Dichlorobenzene " ND 5 0.21 1,2-Dichloroethane " ND 5 0.43 1,1-Dichloroethylene(vinylidene chloride) " ND 14 0.41 Dichloromethane " ND 50 0.34 2-4 Dichlorophenol " ND 900 0.15 2,4-Dichlorophenoxy acetic acid (2,4-D) " ND 90 0.40 Diclofop-methyl " ND 20 0.12 Diquat " ND 70 1 Diuron " ND 150 0.87 Glyphosate " ND 150 0.87 Metolachlor " ND 100 0.12 (MCPA) " ND 80 0.58 Paraquat " ND 80 0.58 Paraquat " ND 100 1 Prictoram " ND 3 0.04 Prometryne	1,2-Dichlorobenzene	"	ND	200	0.50
1,2-Dichloroethane " ND 5 0.43 1,1-Dichloroethylene(vinylidene chloride) " ND 14 0.41 Dichloromethane " ND 50 0.34 2-4 Dichlorophenol " ND 900 0.15 2,4-Dichlorophenoxy acetic acid (2,4-D) " ND 9 0.40 Dimethoate " ND 20 0.12 Diquat " ND 20 0.12 Diquat " ND 150 0.87 Glyphosate " ND 190 0.091 Metolachlor " ND 100 0.12 Malathion " ND 100 0.12 (MCPA) " ND 80 0.58 Paraquat " ND 80 0.58 Paraquat " ND 100 1 Potorate " ND 10 1 Potorate " ND 10 0.15 Prometryne " ND 1	1,4-Dichlorobenzene	"	ND	5	0.21
1,1-Dichloroethylene(vinylidene chloride) " ND 14 0.41 Dichloromethane " ND 50 0.34 2-4 Dichlorophenol " ND 900 0.15 2,4-Dichlorophenoxy acetic acid (2,4-D) " ND 100 0.19 Diclofop-methyl " ND 9 0.40 Dimethoate " ND 20 0.12 Diquat " ND 70 1 Diuron " ND 150 0.87 Glyphosate " ND 190 0.091 Metolachlor " ND 50 0.992 2-methyl-4chlorophenoxyacetic acid " ND 80 0.12 (MCPA) " ND 80 0.12 10 Metribuzin " ND 80 0.12 10 Paraquat " ND 80 0.58 11 Paraquat " ND 10	1,2-Dichloroethane	"	ND	5	0.43
Dichloromethane " ND 50 0.34 2-4 Dichlorophenol " ND 900 0.15 2,4-Dichlorophenoxy acetic acid (2,4-D) " ND 100 0.19 Diclofop-methyl " ND 9 0.40 Dimethoate " ND 20 0.12 Diquat " ND 70 1 Diuron " ND 280 6 Malathion " ND 50 0.091 Metolachlor " ND 50 0.092 2-methyl-4chlorophenoxyacetic acid " ND 50 0.092 2-methyl-4chlorophenoxyacetic acid " ND 100 0.12 Metribuzin " ND 80 0.12 Metribuzin " ND 80 0.58 Paraquat " ND 60 0.15 Phorate " ND 10 1 Polopchorinated Biphenyl	1,1-Dichloroethylene(vinylidene chloride)	"	ND	14	0.41
2-4 Dichlorophenol " ND 900 0.15 2,4-Dichlorophenoxy acetic acid (2,4-D) " ND 100 0.19 Diclofop-methyl " ND 9 0.40 Dimethoate " ND 20 0.12 Diquat " ND 70 1 Diuron " ND 280 6 Malathion " ND 150 0.87 Glyphosate " ND 190 0.091 Metolachlor " ND 50 0.992 2-methyl-4chlorophenoxyacetic acid " ND 100 0.12 (MCPA) " ND 80 0.58 Paraquat " ND 80 0.58 Paraquat " ND 100 1 Pictoram " ND 2 0.11 Pictoram " ND 3 0.04 Prometryne " ND	Dichloromethane	"	ND	50	0.34
2,4-Dichlorophenoxy acetic acid (2,4-D) " ND 100 0.19 Diclofop-methyl " ND 9 0.40 Dimethoate " ND 20 0.12 Diquat " ND 70 1 Diuron " ND 150 0.87 Glyphosate " ND 280 6 Malathion " ND 190 0.091 Metolachlor " ND 50 0.922 2-methyl-4chlorophenoxyacetic acid " ND 100 0.12 Metribuzin " ND 80 0.12 Monochlorobenzene " ND 80 0.58 Paraquat " ND 10 1 Pertachlorophenol " ND 2 0.11 Pictoram " ND 10 1 1 Polychlorinated Biphenyls(PCB) " ND 1 0.23 Simazine <td>2-4 Dichlorophenol</td> <td>"</td> <td>ND</td> <td>900</td> <td>0.15</td>	2-4 Dichlorophenol	"	ND	900	0.15
Diclofop-methyl " ND 9 0.40 Dimethoate " ND 20 0.12 Diquat " ND 70 1 Diuron " ND 150 0.87 Glyphosate " ND 280 6 Malathion " ND 280 6 Malathion " ND 190 0.091 Metolachlor " ND 50 0.092 2-methyl-4chlorophenoxyacetic acid " ND 80 0.12 Monochlorobenzene " ND 80 0.58 Paraquat " ND 80 0.58 Paraquat " ND 10 1 Phorate " ND 2 0.11 Phicloram " ND 190 0.25 Polychlorinated Biphenyls(PCB) " ND 1 0.23 Simazine " ND 10	2,4-Dichlorophenoxy acetic acid (2,4-D)	"	ND	100	0.19
Dimethoate " ND 20 0.12 Diquat " ND 70 1 Diuron " ND 150 0.87 Glyphosate " ND 150 0.87 Glyphosate " ND 280 6 Malathion " ND 190 0.091 Metolachlor " ND 50 0.092 2-methyl-4chlorophenoxyacetic acid " ND 80 0.12 (MCPA) " ND 80 0.12 Monochlorobenzene " ND 80 0.58 Paraquat " ND 60 0.15 Phorate " ND 60 0.15 Phorate " ND 100 1 Picloram " ND 10 0.25 Polychlorinated Biphenyls(PCB) " ND 1 0.23 Simazine " ND 10	Diclofop-methyl	"	ND	9	0.40
Diquat " ND 70 1 Diuron " ND 150 0.87 Glyphosate " ND 280 6 Malathion " ND 190 0.091 Metolachlor " ND 50 0.092 2-methyl-4chlorophenoxyacetic acid " ND 100 0.12 (MCPA) " ND 80 0.12 Metribuzin " ND 80 0.58 Paraquat " ND 80 0.58 Paraquat " ND 10 1 Pentachlorophenol " ND 60 0.15 Phorate " ND 10 1 Picloram " ND 10 0.25 Polychlorinated Biphenyls(PCB) " ND 1 0.23 Simazine " ND 10 0.15 Terbufos " ND 10 <	Dimethoate	"	ND	20	0.12
Diuron " ND 150 0.87 Glyphosate " ND 280 6 Malathion " ND 190 0.091 Metolachlor " ND 50 0.092 2-methyl-4chlorophenoxyacetic acid " ND 100 0.12 (MCPA) " ND 80 0.12 Monochlorobenzene " ND 80 0.58 Paraquat " ND 60 0.15 Phorate " ND 60 0.15 Phorate " ND 100 1 Picloram " ND 190 0.25 Polychlorinated Biphenyls(PCB) " ND 10 0.15 Terbufos " ND 10 0.12 Simazine " ND 10 0.12 Tetrachloroethylene " ND 10 0.45 2,3,4,6-Tetrachlorophenol " N	Diquat	"	ND	70	1
Glyphosate " ND 280 6 Malathion " ND 190 0.091 Metolachlor " ND 50 0.092 2-methyl-4chlorophenoxyacetic acid " ND 100 0.12 (MCPA) " ND 80 0.12 Metribuzin " ND 80 0.58 Paraquat " ND 60 0.15 Phorachlorophenol " ND 60 0.15 Phorate " ND 60 0.15 Phorate " ND 10 1 Picloram " ND 10 1 Picloram " ND 10 0.25 Polychlorinated Biphenyls(PCB) " ND 1 0.23 Simazine " ND 10 0.15 Terbufos " ND 10 0.45 2,3,4,6-Tetrachlorophenol " ND	Diuron	"	ND	150	0.87
Malathion " ND 190 0.091 Metolachlor " ND 50 0.092 2-methyl-4chlorophenoxyacetic acid " ND 100 0.12 (MCPA) " ND 80 0.12 Metribuzin " ND 80 0.58 Paraquat " ND 80 0.58 Paraquat " ND 60 0.15 Phorate " ND 60 0.15 Phorate " ND 10 1 Picloram " ND 190 0.25 Polychlorinated Biphenyls(PCB) " ND 1 0.23 Simazine " ND 10 0.15 Terbufos " ND 10 0.15 Zerbufos " ND 10 0.12 Zertachlorophenol " ND 10 0.15 Zerbufos " ND 10	Glyphosate	"	ND	280	6
Metolachlor " ND 50 0.092 2-methyl-4chlorophenoxyacetic acid (MCPA) " ND 100 0.12 Metribuzin " ND 80 0.12 Monochlorobenzene " ND 80 0.58 Paraquat " ND 80 0.58 Paraquat " ND 10 1 Pentachlorophenol " ND 60 0.15 Phorate " ND 2 0.11 Picloram " ND 100 1 Prometryne " ND 190 0.25 Polychlorinated Biphenyls(PCB) " ND 1 0.23 Simazine " ND 1 0.23 Simazine " ND 10 0.15 Terbufos " ND 10 0.45 2,3,4,6-Tetrachlorophenol " ND 100 0.14 Triallate "	Malathion	"	ND	190	0.091
2-methyl-4chlorophenoxyacetic acid (MCPA) " ND 100 0.12 Metribuzin " ND 80 0.12 Monochlorobenzene " ND 80 0.58 Paraquat " ND 10 1 Pentachlorophenol " ND 60 0.15 Phorate " ND 2 0.11 Picloram " ND 100 1 Prometryne " ND 190 0.25 Polychlorinated Biphenyls(PCB) " ND 1 0.23 Simazine " ND 10 0.15 Terbufos " ND 10 0.15 Terbufos " ND 10 0.15 Z,3,4,6-Tetrachlorophenol " ND 10 0.45 Z,3,4,6-Tetrachlorophenol " ND 100 0.14 Triallate " ND 5 0.38 Z,4,6-Trichlorophenol	Metolachlor	"	ND	50	0.092
(MCPA) " ND 80 0.12 Metribuzin " ND 80 0.58 Monochlorobenzene " ND 80 0.58 Paraquat " ND 10 1 Pentachlorophenol " ND 60 0.15 Phorate " ND 2 0.11 Picloram " ND 190 0.25 Polychlorinated Biphenyls(PCB) " ND 3 0.04 Prometryne " ND 1 0.23 Simazine " ND 1 0.23 Terbufos " ND 1 0.12 Tertachloroethylene " ND 10 0.45 2,3,4,6-Tetrachlorophenol " ND 100 0.14 Triallate " ND 5 0.38 2,4,6-Trichlorophenol " ND 5 0.25 Trifluralin " ND	2-methyl-4chlorophenoxyacetic acid	"	ND	100	0.12
Metribuzin " ND 80 0.12 Monochlorobenzene " ND 80 0.58 Paraquat " ND 10 1 Pentachlorophenol " ND 60 0.15 Phorate " ND 2 0.11 Picloram " ND 190 0.25 Polychlorinated Biphenyls(PCB) " ND 3 0.04 Prometryne " ND 1 0.23 Simazine " ND 10 0.15 Terbufos " ND 10 0.15 Terbufos " ND 10 0.12 Triallate " ND 10 0.45 2,3,4,6-Tetrachlorophenol " ND 100 0.14 Triallate " ND 5 0.38 2,4,6-Trichlorophenol " ND 5 0.25 Trifluralin " ND	(MCPA)				
Monochlorobenzene " ND 80 0.58 Paraquat " ND 10 1 Pentachlorophenol " ND 60 0.15 Phorate " ND 2 0.11 Picloram " ND 190 0.25 Polychlorinated Biphenyls(PCB) " ND 3 0.04 Prometryne " ND 1 0.23 Simazine " ND 10 0.15 Terbufos " ND 10 0.15 Tetrachloroethylene " ND 10 0.15 2,3,4,6-Tetrachlorophenol " ND 10 0.445 Triallate " ND 100 0.14 Trichloroethylene " ND 5 0.38 2,4,6-Trichlorophenol " ND 5 0.25 Trifluralin " ND 45 0.12	Metribuzin	"	ND	80	0.12
Paraquat " ND 10 1 Pentachlorophenol " ND 60 0.15 Phorate " ND 2 0.11 Picloram " ND 190 0.25 Polychlorinated Biphenyls(PCB) " ND 3 0.04 Prometryne " ND 1 0.23 Simazine " ND 10 0.15 Terbufos " ND 10 0.15 Tetrachloroethylene " ND 10 0.12 Triallate " ND 100 0.14 Triallate " ND 100 0.14 Trichloroethylene " ND 5 0.38 2,4,6-Trichlorophenol " ND 5 0.25 Trifluralin " ND 45 0.12 Vinyl Chloride " ND 1 0.17	Monochlorobenzene	"	ND	80	0.58
Pentachlorophenol " ND 60 0.15 Phorate " ND 2 0.11 Picloram " ND 190 0.25 Polychlorinated Biphenyls(PCB) " ND 3 0.04 Prometryne " ND 1 0.23 Simazine " ND 10 0.15 Terbufos " ND 10 0.15 Tetrachloroethylene " ND 10 0.12 2,3,4,6-Tetrachlorophenol " ND 100 0.14 Triallate " ND 230 0.10 Trichloroethylene " ND 5 0.38 2,4,6-Trichlorophenol " ND 5 0.25 Trifluralin " ND 45 0.12 Vinyl Chloride " ND 1 0.17	Paraquat	"	ND	10	1
Phorate " ND 2 0.11 Picloram " ND 190 0.25 Polychlorinated Biphenyls(PCB) " ND 3 0.04 Prometryne " ND 1 0.23 Simazine " ND 1 0.23 Simazine " ND 10 0.15 Terbufos " ND 1 0.12 Tetrachloroethylene " ND 10 0.45 2,3,4,6-Tetrachlorophenol " ND 100 0.14 Triallate " ND 230 0.10 Trichloroethylene " ND 5 0.38 2,4,6-Trichlorophenol " ND 5 0.25 Trifluralin " ND 45 0.12 Vinyl Chloride " ND 1 0.17	Pentachlorophenol	"	ND	60	0.15
Picloram " ND 190 0.25 Polychlorinated Biphenyls(PCB) " ND 3 0.04 Prometryne " ND 1 0.23 Simazine " ND 10 0.15 Terbufos " ND 1 0.12 Tetrachloroethylene " ND 10 0.45 2,3,4,6-Tetrachlorophenol " ND 100 0.14 Triallate " ND 100 0.14 Trichloroethylene " ND 100 0.14 Trichloroethylene " ND 5 0.38 2,4,6-Trichlorophenol " ND 5 0.25 Trifluralin " ND 45 0.12 Vinyl Chloride " ND 1 0.17	Phorate	"	ND	2	0.11
Polychlorinated Biphenyls(PCB) " ND 3 0.04 Prometryne " ND 1 0.23 Simazine " ND 10 0.15 Terbufos " ND 1 0.12 Tetrachloroethylene " ND 10 0.45 2,3,4,6-Tetrachlorophenol " ND 100 0.14 Triallate " ND 100 0.14 Trichloroethylene " ND 230 0.10 Trichloroethylene " ND 5 0.38 2,4,6-Trichlorophenol " ND 5 0.25 Trifluralin " ND 45 0.12 Vinyl Chloride " ND 1 0.17	Picloram	"	ND	190	0.25
Prometryne " ND 1 0.23 Simazine " ND 10 0.15 Terbufos " ND 1 0.12 Tetrachloroethylene " ND 10 0.45 2,3,4,6-Tetrachlorophenol " ND 100 0.14 Triallate " ND 230 0.10 Trichloroethylene " ND 5 0.38 2,4,6-Trichlorophenol " ND 45 0.12 Trifluralin " ND 10 0.17	Polychlorinated Biphenyls(PCB)	"	ND	3	0.04
Simazine " ND 10 0.15 Terbufos " ND 1 0.12 Tetrachloroethylene " ND 10 0.45 2,3,4,6-Tetrachlorophenol " ND 100 0.14 Triallate " ND 230 0.10 Trichloroethylene " ND 5 0.38 2,4,6-Trichlorophenol " ND 5 0.25 Trifluralin " ND 45 0.12 Vinyl Chloride " ND 1 0.17	Prometryne	"	ND	1	0.23
Terbufos " ND 1 0.12 Tetrachloroethylene " ND 10 0.45 2,3,4,6-Tetrachlorophenol " ND 100 0.14 Triallate " ND 230 0.10 Trichloroethylene " ND 5 0.38 2,4,6-Trichlorophenol " ND 5 0.25 Trifluralin " ND 45 0.12 Vinyl Chloride " ND 1 0.17	Simazine	"	ND	10	0.15
Tetrachloroethylene " ND 10 0.45 2,3,4,6-Tetrachlorophenol " ND 100 0.14 Triallate " ND 230 0.10 Trichloroethylene " ND 5 0.38 2,4,6-Trichlorophenol " ND 5 0.25 Trifluralin " ND 45 0.12 Vinyl Chloride " ND 1 0.17	Terbufos	"	ND	1	0.12
2,3,4,6-Tetrachlorophenol " ND 100 0.14 Triallate " ND 230 0.10 Trichloroethylene " ND 5 0.38 2,4,6-Trichlorophenol " ND 5 0.25 Trifluralin " ND 45 0.12 Vinyl Chloride " ND 1 0.17	Tetrachloroethylene	"	ND	10	0.45
Triallate " ND 230 0.10 Trichloroethylene " ND 5 0.38 2,4,6-Trichlorophenol " ND 5 0.25 Trifluralin " ND 45 0.12 Vinyl Chloride " ND 1 0.17	2,3,4,6-Tetrachlorophenol	"	ND	100	0.14
Trichloroethylene " ND 5 0.38 2,4,6-Trichlorophenol " ND 5 0.25 Trifluralin " ND 45 0.12 Vinyl Chloride " ND 1 0.17	Triallate	"	ND	230	0.10
2,4,6-Trichlorophenol " ND 5 0.25 Trifluralin " ND 45 0.12 Vinyl Chloride " ND 1 0.17	Trichloroethylene	"	ND	5	0.38
Trifluralin " ND 45 0.12 Vinyl Chloride " ND 1 0.17	2,4,6-Trichlorophenol	"	ND	5	0.25
Vinyl Chloride " ND 1 0.17	Trifluralin	"	ND	45	0.12
	Vinyl Chloride	"	ND	1	0.17

APPENDIX B: 2020 WATER QUANTITY SUMMARY

2020 ANNUAL DRINKING WATER SYSTEM SUMMARY REPORT Thamesford Water System

1. GENERAL INFORMATION

Oxford County prepares a report summarizing system operation and water quality for every municipal drinking water system annually. The reports detail the latest water quality testing results, water quantity statistics and any adverse conditions that may have occurred for the previous year. They are available for review by the end of February on the Oxford County website at <u>www.oxfordcounty.ca/drinkingwater</u> or by contacting the Public Works Department.

All efforts have been made to ensure the information presented in this report is accurate. If you have any questions or comments concerning the report please contact the County of Oxford at the address and phone number listed below or by email at <u>publicworks@oxfordcounty.ca</u>.

Drinking Water System:	Thamesford Water System
Drinking Water System Number:	2200000610
Drinking Water System Owner & Contact Information:	Oxford County Public Works Department Water Services P.O. Box 1614 21 Reeve Street Woodstock, ON N4S 7Y3 Telephone: 519-539-9800 Toll Free: 866-537-7778 Email: publicworks@oxfordcounty.ca
Reporting Period:	January 1, 2020 – December 31, 2020

1.1. System Description

The Thamesford Water System is a Large Municipal Water system as defined by Regulation 170/03 and serves a population of approximately 2,430. The system consists of 3 well sources, 2 of which are classified as GUDI (Groundwater Under the Direct Influence of surface water). The third is a secure groundwater well. A new well at the River well site was developed and will be connected in 2021. The water is treated by filtration for iron and manganese removal followed by disinfection by Ultra Violet (UV) light and sodium hypochlorite. In 2020, approximately 11,275 L of sodium hypochlorite was used in the water treatment process. The chemical is certified to meet standards set by the Standards Council of Canada or American National Standards Institute.

The 2,050 m³ water tower provides storage and maintains system pressure. A standby generator is available to run the facility in the event of a power failure. The system is maintained by licensed water system operators, who operate treatment and monitoring equipment and collect samples as specified by the Regulation. Alarms automatically notify operators in the event of failure of critical operational requirements.

1.2. Major Expenses

The Thamesford Water System is one of 14 water systems that have revenues and expenses pooled for economy of scale purposes. The systems are combined into the Township Water financial system and in 2020 had forecasted operating and maintenance expenditures of approximately \$2,000,000.

In addition to regular operational and maintenance expenditures, Thamesford Capital Improvement projects included:

- \$350,000 for painting and upgrades to the Thamesford water tower
- \$75,000 for development of new well 4
- \$350,000 for replacement of distribution water mains in the Township systems
- \$36,000 for improvements to water facilities
- \$170,000 Groundwater Model update for Beachville, Embro, Innerkip, Mt Elgin & Thamesford

Capital Improvement projects for all systems included:

- \$280,000 to develop Countywide SCADA Master Plan for all water systems
- \$50,000 Updated Water Modelling
- \$10,000 Asset Management valuation for all treatment, pumping and storage facilities
- \$75,000 Two mobile generators

2. MICROBIOLOGICAL TESTING

2.1. E. coli and Total Coliform

Bacteriological tests for *E. coli* and total coliforms are required weekly on the raw and treated water at the facility and in the distribution system. Extra samples are taken after major repairs or maintenance work. Any *E. coli* or total coliform results above 0 in treated water must be reported to the Ministry of Environment, Conservation and Parks (MECP) and Medical Officer of Health (MOH). Resamples and any other required actions are taken as quickly as possible. The results from the 2020 sampling program are shown on the table below. There was one adverse test results from 196 treated water samples in this reporting period.

	Number of Samples	Range of E. coli Results Min - Max MAC = 0	Range of Total Coliform Results Min - Max MAC = 0
Raw	154	0	0 - 48
Treated	54	0	0
Distribution	142	0	0 - 5

2.2. Heterotrophic Plate Count (HPC)

HPC analyses are required from the treatment and distribution water. The tests are required weekly for treated water and for 25% of the required distribution system bacteriological samples. HPC should be less than 500 colonies per 1 mL. Results over 500 colonies per 1 mL may indicate a change in water quality but it is not considered an indicator of unsafe water. 2020 results are shown in the table below.

	Number of Samples	Range of HPC Min - Max
Treated	51*	0 - 2
Distribution	36	0 - 22

*a lab accident occurred with one sample and there was no result

3. CHEMICAL TESTING

The Safe Drinking Water Act requires periodic testing of the water for approximately 60 different chemical parameters. The latest results for all parameters are provided in Appendix A. The sampling frequency varies for different types and sizes of water systems and chemical parameters. If the concentration of a parameter is above half of the Maximum Allowable Concentration (MAC) under the Ontario Drinking Water Quality Standards, an increased testing frequency of once every three months is required by the Regulation. Where concerns regarding a parameter exist, the MECP can also require additional sampling be undertaken.

Information on the health effects and allowable limits of components in drinking water may be found on the MECP web page through the link provided in Appendix A. Additional information on common chemical parameters specific to the Thamesford system is provided below.

3.1. Sodium

Sodium levels in drinking water are tested once every five years. The aesthetic objective is 200 mg/L meaning at levels less than this, sodium will not impair the taste of water.

When sodium levels are above 20 mg/L the MECP and MOH are notified. Southwestern Public Health maintain an information page on sodium in drinking water at https://www.swpublichealth.ca/en/partners-and-professionals/resources/Health-Care-Providers/Alerts-Advisories-Updates/Advisories/ADV_HIA-Sodium-20201203.pdf in order to help people on sodium restricted diets control their sodium intake. The average sodium level in Thamesford is 26.0 mg/L.

3.2. Hardness

This is an aesthetic parameter that may affect the appearance of the water but is not related to health. Well water commonly has high levels of hardness and other minerals from being in contact with underground rock formations. Many households have water softeners to help reduce white calcium deposits and improve the efficiency of soaps. This information is included here to help set the water softener at the level recommended by the manufacturer. The Hardness in the Thamesford System is 467 mg/L (equivalent to 33 grains).

3.3. Additional Testing Required by MECP

None.

4. OPERATIONAL MONITORING

4.1. Chlorine Residual

Free chlorine levels of the treated water are monitored continuously at the discharge point of the Water Treatment Facility. In the distribution system, free chlorine is checked twice weekly at various locations. As a target, free chlorine residual within the distribution system should be above 0.20 mg/L. A free chlorine level lower than 0.05 mg/L must be reported and corrective action taken. There were no reportable incidents in 2020. A summary of the chlorine residual readings is provided in the table below.

4.2. Turbidity

Turbidity of treated water is continuously monitored at the treatment facility, as a change in turbidity can indicate an operational problem. The turbidity of untreated water from the well is checked weekly. Turbidity is measured in nephelometric turbidity units (NTU). Under Regulation 170/03 turbidity in groundwater is not reportable however turbidity should be < 1 NTU at the treatment plant and < 5 NTU in the distribution system. A summary of the monitoring results for 2020 is provided in the table below.

Parameter	Number of Tests or Monitoring Frequency	Range of Results (Min – Max) and Average
Chlorine residual in distribution (mg/L)	Continuous	(0.29 – 1.67) 1.10
Chlorine residual after treatment (mg/L)	Continuous	(0.78 – 3.98) 1.38
Turbidity after treatment (NTU)	Continuous	(0.04 – 2.48) 0.07

4.3. 4.3. Ultra Violet (UV) Disinfection

Supply wells that have been classified as being GUDI require "enhanced disinfection" through ultra violet light (UV) followed by chlorination. A minimum UV dosage of 40 mJ/cm² is maintained to inactivate any microorganisms that may be present from contact with surface water. Insufficient dosage of UV lasting more than 10 minutes must be reported as inadequate disinfection. There were no occurrences of inadequate UV disinfection in 2020.

5. WATER QUANTITY

Continuous monitoring of flowrates from supply wells into the treatment system and from the facility into the distribution system is required by Regulation 170/03. The Municipal Drinking Water License and Permit to Take Water issued by the MECP regulate the amount of water that can be utilized over a given time period. A summary of the 2020 flows are provided in the Table below and presented graphically in Appendix B.

Flow Summary	Quantity
Permit to Take Water Limit	5,584 m³/d
Municipal Drinking Water License Limit	5,391 m³/d
2020 Average Daily Flow	754 m³/d
2020 Maximum Daily Flow	2,248 m³/d
2020 Average Monthly Flow	22,599 m ³
2020 Total Amount of Water Supplied	276,171 m ³

The max day was from refilling the water tower does not represent normal usage. A more realistic maximum day flow is 1,569 m³/d. A review of the available supply capacity and the anticipated growth forecasted for the community indicates that the system has sufficient capacity over the 20 year planning horizon.

6. NON-COMPLIANCE FINDINGS AND ADVERSE RESULTS

This section documents any known incidents of non-compliance or adverse results and the associated correction actions taken to resolve the issue. Non-compliance issues are typically identified by either the Operating Authority or the MECP Drinking Water Inspectors. The issues and associated required actions are documented by the Inspectors in the system's Annual Inspection Report. All non-compliance issues are investigated, corrective actions taken and documented using the County's Drinking Water Quality Management System (DWQMS) procedures.

6.1. Non-Compliance Findings

The annual MECP inspection took place in September 2020. There were no non-compliance findings and the 2020 Inspection Report rating was 100%.

6.2. Adverse Results

Incident/Date	Corrective Action	Resolution/Date	
Treated or Distribution Water Sam	ple with Positive Test for E.Coli or	Fotal Coliform Bacteria	
5 TC cfu/100mL – treated	Reported and resamples were	Resample results acceptable May	
distribution sample May 19, 2020	taken	21, 2020	

APPENDIX A: SUMMARY OF CHEMICAL RESULTS

UNDERSTANDING CHEMICAL TEST RESULTS

The following tables summarize the laboratory results of the chemical testing Oxford County is required to complete. Different types of parameters are required to be tested for at different frequencies as noted below. Explanations on the health impacts of these parameters can be found can be found in the MECP document at https://cvc.ca/wp-content/uploads/2011/03/std01_079707.pdf PSIB 4449e01 titled "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines".

Results are shown as concentrations with units of either milligrams per litre (mg/L) or micrograms per litre (ug/L). 1 mg/L is equal to 1000 ug/L. The Maximum Acceptable Concentration (MAC) is the highest amount of a parameter that is acceptable in Municipal drinking water and can be found in the MECP Drinking Water Standards. The Method Detection Limit (MDL) is the lowest amount to which the laboratory can confidently measure. A result of "ND" stands for "Not Detected" and means that the concentration of the chemical is lower than the laboratory's equipment is capable of measuring.

Parameter	Result Range Min – Max (mg/L)	Average Result (mg/L)	MAC (mg/L)	MDL (mg/L)
Nitrite	ND – 0.006	<0.003	1.0	0.003
Nitrate	2.24 - 3.32	2.75	10.0	0.006

Nitrate and nitrite samples are required every 3 months in normal operation.

Trihalomethane (THM) and total Haloacetic Acids (HAA) are by-products of the disinfection process. The samples are required every 3 months from the distribution system.

Parameter	Annual Average	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Trihalomethane (THM)	2020	25	100	0.37
Haloacetic Acids (HAA)	2020	11.6	80	5.3

The following Table summarizes the most recent test results for Sodium and Fluoride. Testing and reporting any adverse results is required every 5 years.

Parameter	Sample Date	Result Value (mg/L)	MAC (mg/L)	MDL (mg/L)
Sodium	May 21 /19	26.0	20.0*	0.01
Fluoride	May 21 /19	0.89	1.5**	0.06

*Sodium levels between 20 – 200 mg/L must be reported every 5 years.

**Natural levels of fluoride between 1.5 - 2.4 mg/L must be reported every 5 years.

The following Table summarizes the most recent results for the Lead Testing Program. Lead samples are taken every 3 years. Levels of alkalinity and pH are monitored twice per year in the distribution system to ensure water quality is consistent and does not facilitate leaching of lead into the water.

Parameter	Result Range (Min - Max)	Number of Samples	Acceptable Level
Distribution Alkalinity	253 - 258	4	30 – 500mg/L
Distribution pH	7.4 - 7.60	4	6.5 – 8.5
Distribution Lead 2018	0.08 - 1.91	4	10 ug/L MAC

The following Table summarizes the most recent test results for Schedule 23. Testing is required annually for GUDI wells.

Parameter	Sample Date	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Antimony	May 25/20	ND	6	0.09
Arsenic	"	0.2	10	0.2
Barium	"	62.6	1000	0.01
Boron	"	63	5000	2
Cadmium	"	ND	5	0.003
Chromium	"	0.2	50	0.08
Mercury	"	ND	1	0.01
Selenium	"	0.22	5	0.04
Uranium	"	0.318	20	0.001

Baramatar	Sample	Result	MAC (ug/L)	MDL (ug/L)
Alashlar	Dale Max 25/20		E E	0.02
Alachioi Atrozina i Ni daalluidatadmatabalitaa	Way 25/20 "		5 F	0.02
Atrazine + N-dealkylatedmetobolites	"		5	0.01
		ND	20	0.01
Benzene	u	ND	1	0.32
Benzo(a)pyrene	ű	ND	0.01	0.004
Bromoxynil	"	ND	5	0.33
Carbaryl	"	ND	90	0.05
Carbofuran	"	ND	90	0.01
Carbon Tetrachloride	"	ND	2	0.16
Chlorpyrifos	"	ND	90	0.02
Chlorpyrifos	"	ND	90	0.02
Diazinon	"	ND	20	0.02
Dicamba	"	ND	120	0.20
1,2-Dichlorobenzene	"	ND	200	0.41
1,4-Dichlorobenzene	"	ND	5	0.36
1,2-Dichloroethane	"	ND	5	0.35
1,1-Dichloroethylene (vinylidene chloride)	"	ND	14	0.33
Dichloromethane	"	ND	50	0.35
2-4 Dichlorophenol	"	ND	900	0.15
2,4-Dichlorophenoxy acetic acid (2,4-D)	"	ND	100	0.19
Diclofop-methyl	"	ND	9	0.40
Dimethoate	"	ND	20	0.03
Diguat	"	ND	70	1
Diuron	"	ND	150	0.03
Glyphosate	"	ND	280	1
Malathion	"	ND	190	0.02
2-methyl-4chlorophenoxyacetic acid (MCPA)	"	ND	100	0.12
Metolachlor	"	ND	50	0.01
Metribuzin	"	ND	80	0.02
Monochlorobenzene	"	ND	80	0.30
Paraguat	"	ND	10	1
Pentachlorophenol	"	ND	60	0.15
Phorate	"	ND	2	0.01
Picloram	"	ND	190	1
Polychlorinated Binhenyls(PCB)	"	ND	3	0.04
Prometryne	"	ND	1	0.04
Simazine	"		10	0.00
Terbufos	"		10	0.01
Tetrachloroethylene	"		10	0.01
2346-Tetrachlorophenol	"		100	0.33
	"		220	0.14
Trichloroothylopo	"		23U F	0.01
	"		ວ F	0.43
	"		3 45	0.25
	"		45	0.02
Vinyi Chloride		ND	1	0.17

The following Table summarizes the most recent test results for Schedule 24. Testing is required annually for GUDI wells.

APPENDIX B: 2020 WATER QUANTITY SUMMARY

2020 ANNUAL DRINKING WATER SYSTEM SUMMARY REPORT Tillsonburg Water System

1. GENERAL INFORMATION

Oxford County prepares a report summarizing system operation and water quality for every municipal drinking water system annually. The reports detail the latest water quality testing results, water quantity statistics and any adverse conditions that may have occurred for the previous year. They are available for review by the end of February on the Oxford County website at <u>www.oxfordcounty.ca/drinkingwater</u> or by contacting the Public Works Department.

All efforts have been made to ensure the information presented in this report is accurate. If you have any questions or comments concerning the report please contact the County of Oxford at the address and phone number listed below or by email at <u>publicworks@oxfordcounty.ca</u>.

Drinking Water System:	Tillsonburg Water System
Drinking Water System Number:	220000683
Drinking Water System Owner & Contact Information:	Oxford County Public Works Department Water Services P.O. Box 1614 21 Reeve Street Woodstock, ON N4S 7Y3 Telephone: 519-539-9800 Toll Free: 866-537-7778 Email: publicworks@oxfordcounty.ca
Reporting Period:	January 1, 2020 – December 31, 2020

1.1. System Description

The Tillsonburg Water System is a Large Municipal Water system as defined by Regulation 170/03 and services a population of approximately 16,950. The system consists of ten well sources, seven of which are classified as GUDI (Groundwater Under Direct Influence of surface water) and three are secure groundwater wells. The treatment for each site is summarized below.

Treatment Facility	Wells	Treatment
Mall Road WTF	1A & 2	Filtration for iron removal and disinfection with ultraviolet (UV) and
		chlorine gas.
Fairview WTF	4, 5 & 7A	Disinfection with UV and chlorine gas. Sodium hypochlorite is added for disinfection at Well 7A and for secondary disinfection.
Plank Line WTF	6A	Disinfection with chlorine gas
Bell Mill Road WTF	9, 10 & 11	Filtration for iron removal and disinfection with UV and chlorine gas.
Rokeby Road WTF	12	Disinfection with chlorine gas.

The treatment facilities each house high lift pumps, monitoring and treatment equipment for the supply wells. Three standby generators are available to run facilities in the event of a power failure. Water storage is provided by a 9,100 m³ reservoir located north of the Town. There is a pressure boosting station on Fairview Street.

In 2020, approximately 6,052 kg of chlorine gas and 6,560 L of sodium hypochlorite were used in the water treatment process. The chemicals are certified to meet standards set by the Standards Council of Canada or American National Standards Institute.

The system is maintained by licensed water system operators, who operate treatment and monitoring equipment and collect samples as specified by the Regulation. Alarms automatically notify operators in the event of a failure of critical operational requirements.

1.2. Major Expenses

In 2020, The Tillsonburg Water System had forecasted operation and maintenance expenditures of approximately \$2,200,000. Capital Improvement projects included:

- \$33,000 for improvements to water facilities
- \$50,000 for in-distribution water storage study & modelling
- \$125,000 Town Projects (reconstruction and repairs)
- \$12,000 standby power at the reservoir
- \$65,000 for looping to Broadway through Langrell

Capital Improvement projects for all systems included:

- \$280,000 to develop Countywide SCADA Master Plan for all water systems
- \$50,000 Updated Water Modelling
- \$10,000 Asset Management valuation for all treatment, pumping and storage facilities
- \$75,000 Two mobile generators

2. MICROBIOLOGICAL TESTING

2.1. *E. coli* and Total Coliform

Bacteriological tests for *E. coli* and total coliforms are taken weekly from the raw and treated water at the facility and from the distribution system. Extra samples are taken after major repairs or maintenance work. Any *E. coli* or total coliform results above 0 in treated water must be reported to the Ministry of Environment, Conservation and Parks (MECP) and Medical Officer of Health (MOH). Resamples and any other required actions are taken as quickly as possible. The results from the 2020 sampling program are shown on the table below. There were 4 adverse test results from 598 treated water samples in this reporting period.

	Number of Samples	Range of E. coli Results Min - Max MAC = 0	Range of Total Coliform Results Min - Max MAC = 0
Raw	458	0	0 - 49
Treated	248	0	0 - 1
Distribution	350	0 – 1	0 - 1

2.2. Heterotrophic Plate Count (HPC)

HPC analyses are required from the treated and distribution water. The tests are required weekly for treated water and for 25% of the required distribution system bacteriological samples. HPC should be less than 500 colonies per 1 mL. Results over 500 colonies per 1 mL may indicate a change in water quality but it is not considered an indicator of unsafe water. 2020 results are shown in the table below.

	Number of Samples	Range of HPC Min - Max
Treated	247	0 - 9
Distribution	114	0 - 93

3. CHEMICAL TESTING

The Safe Drinking Water Act requires periodic testing of the water for approximately 50 different chemical parameters. The latest results for all parameters are provided in Appendix A. The sampling frequency varies for different types and sizes of water systems and chemical parameters. If the concentration of a parameter is above half of the Maximum Allowable Concentration (MAC) under the Ontario Drinking Water Quality Standards, an increased testing frequency of once every three months is required by the Regulation. Where concerns regarding a parameter exist, the MECP can also require additional sampling be undertaken.

Information on the health effects and allowable limits of components in drinking water may be found on the MECP web page through the link provided in Appendix A. Additional information on common chemical parameters specific to the Tillsonburg system is provided below.

3.2. Sodium

Sodium levels in drinking water are tested once every five years. The aesthetic objective is 200 mg/L meaning at levels less than this, sodium will not impair the taste of the water.

When sodium levels are above 20 mg/L the MECP and MOH are notified. Southwestern Public Health maintain an information page on sodium in drinking water at https://www.swpublichealth.ca/en/partners-and-professionals/resources/Health-Care-Providers/Alerts-Advisories-Updates/Advisories/ADV_HIA-Sodium-20201203.pdf in order to help people on sodium restricted diets control their sodium intake. The sodium level in water from the Tillsonburg Fairview WTF is 40.8 mg/L. Well 6A at Plank Line has sodium at 39.3 mg/L, however it was not running in 2020. All other locations are under 20 mg/L.

3.3. Hardness

This is an aesthetic parameter that may affect the appearance of the water but is not related to health. Well water commonly has high levels of hardness and other minerals from being in contact with underground rock formations. Many households have water softeners to help reduce white calcium deposits and improve the efficiency of soaps. This information is included here to help set the water softener at the level recommended by the manufacturer. The Hardness ranges from 222 to 372 mg/L (equivalent to 16-26 grains) depending on the wells in use.

3.4. Additional Testing Required by MECP

None

4. OPERATIONAL MONITORING

4.1 Chlorine Residual

Free chlorine levels of the treated water are monitored continuously at the discharge point of the Water Treatment Facility. In the distribution system, free chlorine is checked at least twice weekly at various locations. As a target, free chlorine residual within the distribution system should be above 0.20 mg/L. A free chlorine level lower than 0.05 mg/L must be reported and corrective action taken. There were no reportable incidents in 2020. A summary of the chlorine residual readings is provided in the table below.

4.2. Turbidity

Turbidity of treated water is continuously monitored at the treatment facility, as a change in turbidity can indicate an operational problem. The turbidity of untreated water from the well is checked weekly. Turbidity is measured in nephelometric turbidity units (NTU). Under Regulation 170/03 turbidity in groundwater is not reportable

however turbidity should be < 1 NTU at the treatment plant and < 5 NTU in the distribution system. A summary of the monitoring results for 2020 is provided in the table below.

Parameter & Location	Monitoring Frequency	Range of Results (Min – Max) and Average
Chlorine residual in distribution (mg/L)	Continuous	(0.21 – 1.54) 0.91
Bell Mill Road WTF		
Chlorine mg/L	Continuous	(0.14 – 2.20) 1.38
Turbidity NTU	Continuous	(0.04 – 1.50) 0.07
Fairview WTF/North Street West		
Chlorine mg/L	Continuous	(0.21 – 3.79) 1.16
Turbidity NTU	Continuous	(0.03 – 1.86) 0.05
Mall Road WTF		
Chlorine mg/L	Continuous	(0.31 – 2.07) 1.37
Turbidity NTU	Continuous	(0.02 – 3.07) 0.07
Plank Line WTF		
Chlorine mg/L	Continuous	Not running
Turbidity NTU	Continuous	"
Rokeby Road WTF		
Chlorine mg/L	Continuous	(0.30 – 2.59) 1.03
Turbidity NTU	Continuous	(0.04 – 3.99) 0.11

4.3. Ultra Violet (UV) Disinfection

Supply wells that have been classified as being GUDI require "enhanced disinfection" through ultra violet light (UV) followed by chlorination. A minimum UV dosage of 40 mJ/cm² is maintained to inactivate any microorganisms that may be present from contact with surface water. Insufficient dosage of UV lasting more than 10 minutes must be reported as inadequate disinfection. There were no occurrences of inadequate UV disinfection in 2020.

5. WATER QUANTITY

Continuous monitoring of flowrates from supply wells into the treatment system and from the facility into the distribution system is required by Regulation 170/03. The Municipal Drinking Water License and Permit to Take Water issued by the MECP regulate the amount of water that can be utilized over a given time period. A summary of the 2020 flows are provided in the Table below and presented graphically in Appendix B.

Flow Summary	Quantity
Permit to Take Water Limit	17,913 m³/d
Municipal Drinking Water License Limit	17,440 m³/d
2020 Average Daily Flow	5,304 m³/d
2020 Maximum Daily Flow	9,067 m³/d
2020 Average Monthly Flow	161,862 m³/d
2020 Total Amount of Water Supplied	1,942,338 m ³

In order to meet the long term growth need of the Town, the County intends to construct a transmission main from Tillsonburg to the Oxford South system in Springford. The construction is currently anticipated to occur within the 20 year planning horizon.

6. NON-COMPLIANCE FINDINGS AND ADVERSE RESULTS

This section documents any known incidents of non-compliance or adverse results and the associated correction actions taken to resolve the issue. Non-compliance issues are typically identified by either the Operating Authority or the MECP Drinking Water Inspectors. The issues and associated required actions are documented by the Inspectors in the system's Annual Inspection Report. All non-compliance issues are investigated, corrective actions taken and documented using the County's Drinking Water Quality Management System (DWQMS) procedures.

6.1

Non-Compliance Findings

The annual MECP inspection took place in November 2020. There were no non-compliance findings and the 2020 Inspection Report rating was 100%.

6.2. Adverse Results

Any adverse results from bacteriological, chemical samples or observations of operational conditions that indicate adverse water quality are reported as required and corrective actions taken. Below is a summary of the three adverse/reportable occurrences for 2020 along with the corresponding resolution.

Incident/Date	Corrective Action	Resolution/Date
Treated or Distribution Water Sam	ple with Positive Test for <i>E.Coli</i> or 1	Fotal Coliform Bacteria
1 TC cfu/100mL in a treated WTF	Reported and a samples collected	Resample results were acceptable
water sample taken Feb 03, 2020	for confirmation	Feb 05, 2020.
1 TC cfu/100mL in a distribution	Reported and a samples collected	Resample results were acceptable
water sample taken Mar 30, 2020	for confirmation	Apr 02, 2020.
NDOGN* in a distribution water	Reported and a samples collected	Resample results taken Nov 25 &
sample taken Nov 23, 2020	for confirmation	26, 2020 were acceptable.

*NDOGN means "No Data - Overgrown with Non-Target bacteria. The plate cannot be counted so is considered adverse for both *EC* and TC.

APPENDIX A: SUMMARY OF CHEMICAL RESULTS

UNDERSTANDING CHEMICAL TEST RESULTS

The following tables summarize the laboratory results of the chemical testing Oxford County is required to complete. Different types of parameters are required to be tested for at different frequencies as noted below. Explanations on the health impacts of these parameters can be found in the MECP document at https://cvc.ca/wp-content/uploads/2011/03/std01_079707.pdf PSIB 4449e01, titled "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines".

Results are shown as concentrations with units of either milligrams per litre (mg/L) or micrograms per litre (ug/L). 1 mg/L is equal to 1000 ug/L. The Maximum Acceptable Concentration (MAC) is the highest amount of a parameter that is acceptable in Municipal drinking water and can be found in the MECP Drinking Water Standards. The Method Detection Limit (MDL) is the lowest amount to which the laboratory can confidently measure. A result of "ND" stands for "Not Detected" and means that the concentration of the chemical is lower than the laboratory's equipment is capable of measuring.

Parameter & Location	Result Range Min – Max (mg/L)	Average Result (mg/L)	MAC (mg/L)	MDL (mg/L)
Nitrite			1.0	0.003
Bell Mill Road WTF	ND	ND		
Fairview WTF	ND	ND		
Mall Road WTF	ND	ND		
Plank Line WTF+	NA	NA		
Rokeby Road WTF	ND	ND		
Nitrate			10.0	0.006
Bell Mill Road WTF	2.84 - 3.02	2.91		
Fairview WTF	6.39 – 7.17	6.73		
Mall Road WTF	1.90 – 2.56	2.12		
Plank Line WTF+	NA	NA		
Rokeby Road WTF	5.06 - 5.70	5.34		

Nitrate and nitrite samples are required every 3 months in normal operation.

+not running in 2020

Trihalomethane (THM) and total Haloacetic Acids (HAA) are by-products of the disinfection process. The samples are required every 3 months from the distribution system.

Parameter	Annual Average	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Trihalomethane (THM)	2020	24.2	100	0.37
Haloacetic Acids (HAA)	2020	5.4	80	5.3

The following Table summarizes the most recent test results for Sodium and Fluoride. Testing and reporting any adverse results is required every 5 years.

Parameter & Location	Sample Date	Result Value (mg/L)	MAC (mg/L)	MDL (mg/L)
Sodium			20.0*	0.01
Bell Mill Road WTF	August 22/16	5.93		
Fairview WTF	May 27/19	40.8		
Mall Road WTF	August 22/16	11.5		
Plank Line WTF+	August 22/16	39.3		
Rokeby Road WTF	August 22/16	2.46		
Fluoride			1.5**	0.06
Bell Mill Road WTF	August 22/16	0.10		
Fairview WTF	May 27/19	0.35		
Mall Road WTF	August 22/16	0.08		
Plank Line WTF+	August 22/16	1.51		
Rokeby Road WTF	August 22/16	0.08		

*Sodium levels between 20 – 200 mg/L must be reported every 5 years

**Natural levels of fluoride between 1.5 - 2.4 mg/L must be reported every 5 years.

+not running in 2020

The following Table summarizes the most recent results for the Lead Testing Program. Lead samples are taken every 3 years. Levels of alkalinity and pH are monitored twice per year in the distribution system to ensure water quality is consistent and does not facilitate leaching of lead into the water.

Parameter	Result Range (Min - Max)	Number of Samples	Acceptable Level
Distribution Alkalinity	181 – 245	8	30 – 500mg/L
Distribution pH	7.3– 7.68	8	6.5 - 8.5
Distribution Lead 2018	0.02 – 2.85	8	10 ug/L MAC

The following Table summarizes the most recent test results for Schedules 23. Testing is required annually for GUDI wells at Bell Mill Road, Fairview and Mall Road.

Parameter	Results (ug/L) Bell Mill Road WTF December 07/20	Results (ug/L) Fairview WTF December 07/20	Results (ug/L) Mall Road WTF December 07/20	MAC (ug/L)	MDL (ug/L)
Antimony	ND	ND	ND	6	0.09
Arsenic	ND	1.8	ND	10	0.02
Barium	32.4	130	58.2	1000	0.01
Boron	13	54	17.0	5000	2.0
Cadmium	ND	0.005	ND	5	0.003
Chromium	0.74	1.00	0.63	50	0.08
Mercury	ND	ND	ND	1	0.01
Selenium	0.16	0.33	0.07	5	0.04
Uranium	0.523	0.367	1.68	20	0.002

The following Table summarizes the most recent test results for Schedules 23. Testing is required every 3 years in secure, Non-GUDI wells at Plank Line and Rokeby Road.

Parameter	Results (ug/L) Plank Line WTF June 6/16+	Results (ug/L) Rokeby Road WTF May 27/19	MAC (ug/L)	MDL (ug/L)
Antimony	ND	ND	6	0.02
Arsenic	10.0	1.2	10	0.2
Barium	52.4	29.6	1000	0.01
Boron	153	14	5000	2.0
Cadmium	ND	ND	5	0.003
Chromium	3.94	0.52	50	0.03
Mercury	ND	ND	1	0.01
Selenium	0.09	0.26	5	0.04
Uranium	0.185	1.63	20	0.002

+not running in 2020

Summary of Organic parameters in Schedule 24 sampled during this reporting period or the most recent sample results. Testing is required annually for GUDI wells at Bells Mill Road, Fairview and Mall Road.

Parameter	Results (ug/L) Bell Mill Rd. WTF December 07/20	Results (ug/L) Fairview WTF December 07/20	Results (ug/L) Mall Road WTF December 07/20	MAC (ug/L)	MDL (ug/L)
Alachlor	ND	ND	ND	5	0.02
Atrazine + N-	ND	0.02	ND	5	0.01
dealkylatedmetobolites					
Azinphos-methyl	ND	ND	ND	20	0.01
Benzene	ND	ND	ND	1	0.32
Benzo(a)pyrene	ND	ND	ND	0.01	0.004
Bromoxynil	ND	ND	ND	5	0.33
Carbaryl	ND	ND	ND	90	0.05
Carbofuran	ND	ND	ND	90	0.01
Carbon Tetrachloride	ND	ND	ND	2	0.16
Chlorpyrifos	ND	ND	ND	90	0.02
Chlorpyrifos	ND	ND	ND	90	0.02
Diazinon	ND	ND	ND	120	0.02
Dicamba	ND	ND	ND	200	0.20
1,2-Dichlorobenzene	ND	ND	ND	5	0.41
1,4-Dichlorobenzene	ND	ND	ND	30	0.36
1,2-Dichloroethane	ND	ND	ND	14	0.35
1,1-Dichloroethylene	ND	ND	ND	50	0.33
(vinylidene chloride)					
Dichloromethane	ND	ND	ND	900	0.35
2-4 Dichlorophenol	ND	ND	ND	100	0.15

	Results (ua/L)	Results (ua/L)	Results (ua/L)		
Parameter	Bell Mill Rd. WTF	Fairview WTF	Mall Road WTF	MAC	MDL
	December 07/20	December 07/20	December 07/20	(Ug/L)	(Ug/L)
2,4-Dichlorophenoxy	ND	ND	ND	9	0.19
acetic acid (2,4-D)					
Diclofop-methyl	ND	ND	ND	20	0.40
Dimethoate	ND	ND	ND	10	0.03
Diquat	ND	ND	ND	150	1
Diuron	ND	ND	ND	280	0.03
Glyphosate	ND	ND	ND	3	1
Malathion	ND	ND	ND	900	0.02
2-methyl-	ND	ND	ND	100	0.12
4chlorophenoxyacetic					
acid (MCPA)					
Metolachlor	ND	ND	ND	80	0.01
Metribuzin	ND	ND	ND	80	0.02
Monochlorobenzene	ND	ND	ND	10	0.30
Paraquat	ND	ND	ND	50	1
Pentachlorophenol	ND	ND	ND	2	0.15
Phorate	ND	ND	ND	190	0.01
Picloram	ND	ND	ND	3	1
Polychlorinated	ND	ND	ND	1	0.04
Biphenyls(PCB)					
Prometryne	ND	ND	ND	10	0.03
Simazine	ND	ND	ND	280	0.01
Terbufos	ND	ND	ND	30	0.01
Tetrachloroethylene	ND	ND	ND	100	0.35
2,3,4,6-	ND	ND	ND	230	0.14
Tetrachlorophenol					
Triallate	ND	ND	ND	5	0.01
Trichloroethylene	ND	ND	ND	5	0.43
2,4,6-Trichlorophenol	ND	ND	ND	280	0.25
Trifluralin	ND	ND	ND	2	0.02
Vinyl Chloride	ND	ND	ND	1	0.17

Summary of Organic parameters in Schedule 24 sampled during this reporting period or the most recent sample results. Testing is required every 3 years in secure, Non-GUDI wells at Plank Line and Rokeby Road.

Parameter	Results (ug/L) Plank Line WTF June 6/16+	Results (ug/L) Rokeby Road WTF June 4/18	MAC (ug/L)	MDL (ug/L)
Alachlor	ND	ND	5	0.02
Atrazine + N-dealkylatedmetobolites	ND	0.02	5	0.01
Azinphos-methyl	ND	ND	20	0.01
Benzene	ND	ND	1	0.32
Benzo(a)pyrene	ND	ND	0.01	0.004
Bromoxynil	ND	ND	5	0.33
Carbaryl	ND	ND	90	0.05
Carbofuran	ND	ND	90	0.01
Carbon Tetrachloride	ND	ND	2	0.16
Chlorpyrifos	ND	ND	90	0.002
Chlorpyrifos	ND	ND	20	0.02
Diazinon	ND	ND	20	0.02
Dicamba	ND	ND	120	0.20
1,2-Dichlorobenzene	ND	ND	200	0.41
1,4-Dichlorobenzene	ND	ND	5	0.36
1,2-Dichloroethane	ND	ND	5	0.35
1,1-Dichloroethylene (vinylidene	ND	ND	14	0.33
chloride)				
Dichloromethane	ND	ND	50	0.35
2-4 Dichlorophenol	ND	ND	900	0.15
2,4-Dichlorophenoxy acetic acid (2,4-D)	ND	ND	100	0.19
Diclofop-methyl	ND	ND	9	0.40
Dimethoate	ND	ND	20	0.03

Parameter	Results (ug/L) Plank Line WTF June 6/16+	Results (ug/L) Rokeby Road WTF June 4/18	MAC (ug/L)	MDL (ug/L)
Diquat	ND	ND	70	1
Diuron	ND	ND	150	0.03
Glyphosate	ND	ND	280	1
Malathion	ND	ND	190	0.02
2-methyl-4chlorophenoxyacetic acid	+	ND	100	0.12
(MCPA) *				
Metolachlor	ND	ND	50	0.01
Metribuzin	ND	ND	80	0.02
Monochlorobenzene	ND	ND	80	0.30
Paraquat	ND	ND	10	1
Pentachlorophenol	ND	ND	60	0.15
Phorate	ND	ND	2	0.01
Picloram	ND	ND	190	1
Polychlorinated Biphenyls(PCB)	ND	ND	3	0.04
Prometryne	ND	ND	1	0.03
Simazine	ND	ND	10	0.01
Terbufos	ND	ND	1	0.01
Tetrachloroethylene	ND	ND	10	0.35
2,3,4,6-Tetrachlorophenol	ND	ND	100	0.14
Triallate	ND	ND	230	0.01
Trichloroethylene	ND	ND	5	0.43
2,4,6-Trichlorophenol	ND	ND	5	0.25
Trifluralin	ND	ND	45	0.02
Vinyl Chloride	ND	ND	1	0.17

+not running in 2020, * MCPA was added in 2017

APPENDIX B: 2020 WATER QUANTITY SUMMARY

2020 ANNUAL DRINKING WATER SYSTEM SUMMARY REPORT Woodstock Water System

1. GENERAL INFORMATION

Oxford County prepares a report summarizing system operation and water quality for every municipal drinking water system annually. The reports detail the latest water quality testing results, water quantity statistics and any adverse conditions that may have occurred for the previous year. They are available for review by the end of February on the Oxford County website at <u>www.oxfordcounty.ca/drinkingwater</u> or by contacting the Public Works Department.

All efforts have been made to ensure the information presented in this report is accurate. If you have any questions or comments concerning the report please contact the County of Oxford at the address and phone number listed below or by email at <u>publicworks@oxfordcounty.ca</u>.

Drinking Water System:	Woodstock Water System
Drinking Water System Number:	220000709
Drinking Water System Owner & Contact Information:	Oxford County Public Works Department Water Services P.O. Box 1614 21 Reeve Street Woodstock, ON N4S 7Y3 Telephone: 519-539-9800 Toll Free: 866-537-7778 Email: <u>publicworks@oxfordcounty.ca</u>
Reporting Period:	January 1, 2020 – December 31, 2020

1.1. System Description

The Woodstock Water System is a Large Municipal Water system as defined by Regulation 170/03 and serves a population of approximately 44,790. The system consists of eleven well sources, six of which are classified as GUDI (Groundwater Under Direct Influence of surface water) and five are secure groundwater wells.

The system consists of four water treatment facilities (WTF), as follows:

Treatment Facility	Wells	Treatment
Thornton WTF	1, 2, 3, 4, 5, 8 & 11	Ultra violet (UV) light and gas chlorination for disinfection
Southside WTF	6&9	Disinfection with gas chlorination & sodium hypochlorite respectively
Sutherland WTF	7	Filtration for iron removal and disinfection with gas chlorination
Trillium Line WTF	12	Disinfection with sodium hypochlorite

The treatment facilities each house high lift pumps, monitoring equipment and treatment equipment for the supply wells. In 2020, approximately 9,248 kg of chlorine gas and 4,100 L of sodium hypochlorite was used in the water treatment process.

Approximately 32,745 m³ of water storage is provided within the Bower Hill and Southside Park reservoirs and the Northwest and East water towers. There are pressure boosting stations on Athlone Street, Nellis Street, County Road 17 and Universal Road that maintain pressure and monitor chlorine residual in segments of the distribution system. Chlorine gas and sodium hypochlorite are certified to meet standards set by the Standards Council of Canada or American National Standards Institute.

1.2. Major Expenses

In 2020 the Woodstock Water System had operating and maintenance expenditures of approximately \$4,600,000. In addition to regular operational and maintenance expenditures, Woodstock Capital Improvement projects included:

- \$45,000 for improvements to water facilities
- \$1,100,000 for city projects (reconstruction and repairs)
- \$120,000 to design & tender the CR4 & Lansdowne WM
- \$660,000 for installation of CR17 watermain

Capital Improvement projects for all systems included:

- \$280,000 to develop Countywide SCADA Master Plan for all water systems
- \$50,000 Updated Water Modelling
- \$10,000 Asset Management valuation for all treatment, pumping and storage facilities
- \$75,000 Two mobile generators

2. MICROBIOLOGICAL TESTING

2.1. E. coli and Total Coliform

Bacteriological tests for *E. coli* and total coliforms are taken weekly from the raw and treated water at the facility. Extra samples are taken after major repairs or maintenance work. Any *E. coli* or total coliform results above 0 in treated water must be reported to the Ministry of Environment, Conservation and Parks (MECP) and Medical Officer of Health (MOH). Resamples and any other required actions are taken as quickly as possible. The results from the 2020 sampling program are shown on the table below. There were no adverse test results from 912 treated water samples in this reporting period.

	Number of Samples	Range of E. coli Results Min - Max MAC = 0	Range of Total Coliform Results Min - Max MAC = 0
Raw	567	0	0 - 9
Treated	208	0	0
Distribution	704	0	0

2.2. Heterotrophic Plate Count (HPC)

HPC analyses are required from the treated and distribution water. The tests are required weekly for treated water and for 25% of the required distribution system bacteriological samples. HPC should be less than 500 colonies per 1 mL. Results over 500 colonies per 1 mL may indicate a change in water quality but it is not considered an indicator of unsafe water. 2020 results are shown in the table below.

	Number of Samples	Range of HPC Min - Max
Treated	206	0 - 10
Distribution	123	0 - 10

3. CHEMICAL TESTING

The Safe Drinking Water Act requires periodic testing of the water for approximately 60 different chemical parameters. The latest results for all parameters are provided in Appendix A. The sampling frequency varies for different types and sizes of water systems and chemical parameters. If the concentration of a parameter is above half of the Maximum Allowable Concentration (MAC) under the Ontario Drinking Water Quality Standards, an increased testing frequency of once every three months is required by the Regulation. Where concerns regarding a parameter exist, the MECP can also require additional sampling be undertaken.

Information on the health effects and allowable limits of components in drinking water may be found on the MECP web page through the link provided in Appendix A. Additional information on common chemical parameters specific to the Woodstock system is provided below.

3.1. Sodium

Sodium levels in drinking water are tested once every five years. The aesthetic objective is 200 mg/L meaning at levels less than this, sodium will not impair the taste of the water.

When sodium levels are above 20 mg/L the MECP and MOH are notified. Southwestern Public Health maintain an information page on sodium in drinking water at https://www.swpublichealth.ca/en/partners-and-professionals/resources/Health-Care-Providers/Alerts-Advisories-Updates/Advisories/ADV_HIA-Sodium-20201203.pdf in order to help people on sodium restricted diets control their sodium intake. The sodium level in water from the Woodstock Sutherland WTF is 92.6 mg/L. All other locations are under 20 mg/L.

3.2. Hardness

This is an aesthetic parameter that may affect the appearance of the water but is not related to health. Well water commonly has high levels of hardness and other minerals from being in contact with underground rock formations. Many households have water softeners to help reduce white calcium deposits and improve the efficiency of soaps. This information is included here to help set the water softener at the level recommended by the manufacturer. The Hardness in the Woodstock System is approximately 427 mg/L (equivalent to 30 grains).

3.3. Additional Testing Required by MECP

Weekly nitrate samples of the treated water from Thornton WTF are required by the Municipal Drinking Water License issued June 9, 2020. Nitrate concentrations must be less than 10.0 mg/L in drinking water. The 2020 nitrate results ranged from 5.18 to 6.91 mg/L.

4. OPERATIONAL MONITORING

4.1. Chlorine Residual

Free chlorine levels of the treated water are monitored continuously at the discharge point of the Water Treatment Facility. In the distribution system, free chlorine is checked twice weekly at various locations. As a target, free chlorine residual within the distribution system should be above 0.20 mg/L. A free chlorine level lower than 0.05 mg/L must be reported and corrective action taken. There were no reportable incidents in 2020. A summary of the chlorine residual readings is provided in the table below.

4.2. Turbidity

Turbidity of treated water is continuously monitored at the treatment facility, as a change in turbidity can indicate an operational problem. The turbidity of untreated water from the well is checked weekly. Turbidity is measured in nephelometric turbidity units (NTU). Under Regulation 170/03 turbidity in groundwater is not reportable however turbidity should be < 1 NTU at the treatment plant and < 5 NTU in the distribution system. A summary of the monitoring results for 2020 is provided in the table below.

Parameter & Location	Monitoring Frequency	Range of Results (Min – Max) and Average
Chlorine residual in distribution (mg/L)	Continuous	(0.25 – 2.46) 1.09
Thornton WTF after treatment		
Chlorine mg/L	Continuous	(0.49 – 1.61) 1.29
Turbidity NTU	Continuous	(0.01 – 2.43) 0.08
Southside WTF after treatment		
Chlorine mg/L	Continuous	(0.30 – 2.86) 1.25
Turbidity NTU	Continuous	(0.03 – 3.99) 0.06
Sutherland WTF after treatment		
Chlorine mg/L	Continuous	(0.25–2.46) 1.09
Turbidity NTU	Continuous	(0.05 – 1.6) 0.10
Trillium Line WTF after treatment		
Chlorine mg/L	Continuous	(0.62 – 2.03) 1.25
Turbidity NTU	Continuous	(0.04 - 3.99) 0.07

4.3. Ultra Violet (UV) Disinfection

Supply wells that have been classified as being GUDI require "enhanced disinfection" through ultra violet light (UV) followed by chlorination. A minimum UV dosage of 40 mJ/cm² is maintained to inactivate any microorganisms that may be present from contact with surface water. Insufficient dosage of UV lasting more than 10 minutes must be reported as inadequate disinfection. There were no occurrences of inadequate UV disinfection in 2020.

5. WATER QUANTITY

Continuous monitoring of flow rates from supply wells into the treatment system and from the facility into the distribution system is required by Regulation 170/03. The Municipal Drinking Water License and Permit to Take Water issued by the MECP regulate the amount of water that can be utilized over a given time period. A summary of the 2020 flows are provided in the Table below and presented graphically in Appendix B.

Flow Summary	Quantity
Permit to Take Water Limit	57,775 m³/d
Municipal Drinking Water License Limit	56,325 m³/d
2020 Average Daily Flow	14,363 m³/d
2020 Maximum Daily Flow	24,143 m³/d
2020 Average Monthly Flow	438,354 m ³
2020 Total Amount of Water Supplied	5,260,252 m ³

A review of the available supply capacity and the anticipated growth forecasted for the community indicates that the system has sufficient capacity over the 20 year planning horizon.

6. NON-COMPLIANCE FINDINGS AND ADVERSE RESULTS

This section documents any known incidents of non-compliance or adverse results and the associated correction actions taken to resolve the issue. Non-compliance issues are typically identified by either the Operating Authority or the MECP Drinking Water Inspectors. The issues and associated required actions are documented by the Inspectors in the system's Annual Inspection Report. All non-compliance issues are investigated, corrective actions taken and documented using the County's Drinking Water Quality Management System (DWQMS) procedures.

6.1. Non-Compliance Findings

The annual MECP inspection took place in August 2020. There was one non-compliance findings and the Inspection Report rating was 96%.

• During the commissioning of a new booster pump facility the incorrect disinfection procedure was followed. A period of 24 hours holding time to ensure disinfection was not provided. The bacteriological samples taken to verify disinfection were acceptable. The AWWA Standards C651 and C652, were reviewed with operations staff and the form verifying the proper procedure was followed was revised.

6.2. Adverse Results

There were no adverse or reportable occurrences in 2020. Any adverse results from bacteriological, chemical samples or observations of operational conditions that indicate adverse water quality are reported as required and corrective actions are taken.

APPENDIX A: SUMMARY OF CHEMICAL RESULTS

UNDERSTANDING CHEMICAL TEST RESULTS

The following tables summarize the laboratory results of the chemical testing Oxford County is required to complete. Different types of parameters are required to be tested for at different frequencies as noted below. Explanations on the health impacts of these parameters can be found in the MECP document <u>https://cvc.ca/wp-content/uploads/2011/03/std01_079707.pdf</u> PSIB4449e01 titled "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines".

Results are shown as concentrations with units of either milligrams per litre (mg/L) or micrograms per litre (ug/L). 1 mg/L is equal to 1000 ug/L. The Maximum Acceptable Concentration (MAC) is the highest amount of a parameter that is acceptable in Municipal drinking water and can be found in the MECP Drinking Water Standards. The Method Detection Limit (MDL) is the lowest amount to which the laboratory can confidently measure. A result of "ND" stands for "Not Detected" and means that the concentration of the chemical is lower than the laboratory's equipment is capable of measuring.

Nitrate and nitrite samples are normally required every 3 months of operation. Weekly nitrate sampling is required at the Thornton WTF.

Parameter & Location	<i>Result Range</i> Min – Max <i>(mg/L)</i>	Average Result (mg/L)	MAC (mg/L)	MDL (mg/L)
Nitrite			1.0	0.003
Thornton WTF	ND – 0.003	ND		
Southside WTF	ND	ND		
Sutherland WTF	ND	ND		
Trillium Line WTF	ND	ND		
Nitrate			10.0	0.006
Thornton WTF	5.10 – 6.91	5.65		
Southside WTF	4.55 - 506	4.76		
Sutherland WTF	0.01 – 0.05	0.03		
Trillium Line WTF	2.08 – 2.13	2.00		

Trihalomethane (THM) and total Haloacetic Acids (HAA) are by-products of the disinfection process. The samples are required every 3 months from the distribution system.

Parameter	Annual Average	Result Value (ug/L)	MAC (ug/L)	MDL (ug/L)
Trihalomethane (THM)	2020	8.2	100	0.37
Haloacetic Acids (HAA)	2020	ND	80	5.3

The following Table summarizes the most recent test results for Sodium and Fluoride. Testing and reporting any adverse results is required every 5 years.

Parameter & Location	Sample Date	Result Value (mg/L)	MAC (mg/L)	MDL (mg/L)
Sodium			20.0*	0.01
Thornton WTF	May 27/19	14.4		
Southside WTF	Mar 12/18	17.0		
Sutherland WTF	May 25/20	92.6		
Trillium Line WTF	Oct. 21/16	14.9		
Fluoride			1.5**	0.06
Thornton WTF	May 27/19	0.27		
Southside WTF	Mar 12/18	0.41		
Sutherland WTF	May 25/20	0.72		
Trillium Line WTF	Oct. 21/16	0.46		

*Sodium levels between 20 – 200 mg/L must be reported every 5 years.

**Natural levels of fluoride between 1.5 – 2.4 mg/L must be reported every 5 years.

The following Table summarizes the most recent results for the Lead Testing Program. Lead samples are taken every 3 years. Levels of alkalinity and pH are monitored twice per year in the distribution system to ensure water quality is consistent and does not facilitate leaching of lead into the water.

Parameter	Result Range (Min - Max)	Number of Samples	Acceptable Level
Distribution Alkalinity	251 - 276	8	30 – 500mg/L
Distribution pH	7.4 - 7.7	8	6.5 – 8.5
Distribution Lead 2018	0.03 - 5.1	8	10 ug/L MAC

The following Table summarizes the most recent test results for Schedule 23. Testing is required annually for GUDI wells at Thornton.

Parameter	Result (ug/L) Thornton WTF Dec 07/20	MAC (ug/L)	MDL (ug/L)
Antimony	ND	6	0.09
Arsenic	0.2	10	0.2
Barium	55.7	1000	0.02
Boron	12	5000	2
Cadmium	ND	5	0.003
Chromium	0.86	50	0.08
Mercury	ND	1	0.01
Selenium	0.36	5	0.04
Uranium	0.768	20	0.002

The following Table summarizes the most recent test result for Schedule 23. Testing is required every 3 years for secure, Non-GUDI wells at Southside, Sutherland and Trillium Line.

Parameter	Result (ug/L) Trillium Line WTF Feb 19/19	Result (ug/L) Southside WTF Nov 29/19	Result (ug/L) Sutherland WTF May30/18	MAC (ug/L)	MDL (ug/L)
Antimony	ND	ND	0.03	6	0.09
Arsenic	0.4	0.2	0.2	10	0.2
Barium	60.9	44.7	110	1000	0.02
Boron	12.5	41	72	5000	2
Cadmium	0.004	ND	ND	5	0.003
Chromium	ND	0.28	0.03	50	0.08
Mercury	ND	ND	0.02	1	0.01
Selenium	0.16	0.26	ND	5	0.04
Uranium	0.970	0.690	0.094	20	0.002

The following Table summarizes the Organic parameters in Schedule 24 sampled during this reporting period or the most recent sample results. Testing is required annually for GUDI wells at Thornton.

Parameter	Result (ug/L) Thornton WTF Dec 07/20	MAC (ug/L)	MDL (ug/L)
Alachlor	ND	5	0.02
Atrazine + N-dealkylatedmetobolites	ND	5	0.01
Azinphos-methyl	ND	20	0.01
Benzene	ND	1	0.32
Benzo(a)pyrene	ND	0.01	0.004
Bromoxynil	ND	5	0.33
Carbaryl	ND	90	0.05
Carbofuran	ND	90	0.01
Carbon Tetrachloride	ND	2	0.16
Chlorpyrifos	ND	90	0.02
Diazinon	ND	20	0.02
Dicamba	ND	120	0.20
1,2-Dichlorobenzene	ND	200	0.41
1,4-Dichlorobenzene	ND	5	0.36
1,2-Dichloroethane	ND	5	0.35
1,1-Dichloroethylene (vinylidene chloride)	ND	14	0.33
Dichloromethane	ND	50	0.35
2-4 Dichlorophenol	ND	900	0.15

Parameter	Result (ug/L) Thornton WTF Dec 07/20	MAC (ug/L)	MDL (ug/L)
2,4-Dichlorophenoxy acetic acid (2,4-D)	ND	100	0.19
Diclofop-methyl	ND	9	0.40
Dimethoate	ND	20	0.03
Diquat	ND	70	1
Diuron	ND	150	0.03
Glyphosate	ND	280	1
Malathion	ND	190	0.02
2-methyl-4chlorophenoxyacetic acid (MCPA)	ND	100	0.12
Metolachlor	ND	50	0.01
Metribuzin	ND	80	0.02
Monochlorobenzene	ND	80	0.30
Paraquat	ND	10	1
Pentachlorophenol	ND	60	0.15
Phorate	ND	2	0.01
Picloram	ND	190	1
Polychlorinated Biphenyls(PCB)	ND	3	0.04
Prometryne	ND	1	0.03
Simazine	ND	10	0.01
Terbufos	ND	1	0.01
Tetrachloroethylene	ND	10	0.35
2,3,4,6-Tetrachlorophenol	ND	100	0.14
Triallate	ND	230	0.01
Trichloroethylene	ND	5	0.43
2,4,6-Trichlorophenol	ND	5	0.25
Trifluralin	ND	45	0.02
Vinyl Chloride	ND	1	0.17

The following Table is a summary of Organic parameters in Schedule 24 sampled during this reporting period or the most recent sample results. Testing is required annually every 3 years for secure, Non-GUDI wells at Southside, Sutherland and Trillium Line.

Parameter	Result (ug/L) Trillium Line WTF Feb 19/19	Result (ug/L) Southside WTF Nov 29/19	Result (ug/L) Sutherland WTF May 30/18	MAC (ug/L)	MDL (ug/L)
Alachlor	ND	ND	ND	5	0.02
Atrazine + N-	ND	ND	ND	5	0.01
dealkylatedmetobolites					
Azinphos-methyl	ND	ND	ND	20	0.02
Benzene	ND	ND	ND	1	0.32
Benzo(a)pyrene	ND	ND	ND	0.01	0.004
Bromoxynil	ND	ND	ND	5	0.33
Carbaryl	ND	ND	ND	90	0.01
Carbofuran	ND	ND	ND	90	0.01
Carbon Tetrachloride	ND	ND	ND	2	0.16
Chlorpyrifos	ND	ND	ND	90	0.02
Diazinon	ND	ND	ND	20	0.02
Dicamba	ND	ND	ND	120	0.20
1,2-Dichlorobenzene	ND	ND	ND	200	0.41
1,4-Dichlorobenzene	ND	ND	ND	5	0.36
1,2-Dichloroethane	ND	ND	ND	5	0.35
1,1-Dichloroethylene (vinylidene	ND	ND	ND	14	0.33
Dichloromothono			ND	50	0.05
Dichloromethane	ND	ND	ND	50	0.35
2-4 Dichlorophenol	ND	ND	ND	900	0.15
(2,4-D)		UN		100	0.19
Diclofop-methyl	ND	ND	ND	9	0.40
Dimethoate	ND	ND	ND	20	0.03

Parameter	Result (ug/L) Trillium Line WTF Feb 19/19	Result (ug/L) Southside WTF Nov 29/19	Result (ug/L) Sutherland WTF May 30/18	MAC (ug/L)	MDL (ug/L)
Diquat	ND	ND	ND	70	1
Diuron	ND	ND	ND	150	0.03
Glyphosate	ND	ND	ND	280	1
Malathion	ND	ND	ND	190	0.02
2-methyl-4chlorophenoxyacetic acid (MCPA)	ND	ND	ND	100	0.12
Metolachlor	ND	ND	ND	50	0.01
Metribuzin	ND	ND	ND	80	0.02
Monochlorobenzene	ND	ND	ND	80	0.30
Paraquat	ND	ND	ND	10	1
Pentachlorophenol	ND	ND	ND	60	0.15
Phorate	ND	ND	ND	2	0.01
Picloram	ND	ND	ND	190	1
Polychlorinated Biphenyls(PCB)	ND	ND	ND	3	0.04
Prometryne	ND	ND	ND	1	0.03
Simazine	ND	ND	ND	10	0.01
Terbufos	ND	ND	ND	1	0.01
Tetrachloroethylene	ND	ND	ND	10	0.35
2,3,4,6-Tetrachlorophenol	ND	ND	ND	100	0.14
Triallate	ND	ND	ND	230	0.01
Trichloroethylene	ND	ND	0.48	5	0.44
2,4,6-Trichlorophenol	ND	ND	ND	5	0.14
Trifluralin	ND	ND	ND	45	0.02
Vinyl Chloride	ND	ND	ND	1	0.17

Notes: Volumes pumped in 2020 Well 9: 3,257 m³